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Abstract

A discontinuous enrichment method (DEM) for the efficient finite element solution

of advection-dominated transport problems in fluid mechanics whose solutions are

known to possess multi-scale features is developed. Attention is focused specifically on

the two-dimensional (2D) advection-diffusion equation −κ∆c(x)+a(x)·∇c(x) = f(x),

the usual scalar model for the Navier-Stokes equations. Following the basic DEM

methodology [1], the usual Galerkin polynomial approximation is locally enriched by

the free-space solutions to the governing homogeneous partial differential equation

(PDE). For the constant-coefficient advection-diffusion equation, several families of

free-space solutions are derived. These include a family of exponential functions that

exhibit a steep gradient in some flow direction, and a family of discontinuous poly-

nomials. A parametrization of the former class of functions with respect to an angle

parameter θi is developed, so as to enable the systematic design and implementation

of DEM elements of arbitrary orders. It is shown that the original constant-coefficient

methodology has a natural extension to variable-coefficient advection-diffusion prob-

lems. For variable-coefficient transport problems, the approximation properties of

DEM can be improved by augmenting locally the enrichment space with a “higher-

order” enrichment function that solves the governing PDE with a(x) linearized to

second order. A space of Lagrange multipliers, introduced at the element interfaces

to enforce a weak continuity of the solution and related to the normal derivatives of the

enrichment functions, is developed. The construction of several low and higher-order

DEM elements fitting this paradigm is discussed in detail. Numerical results for sev-

eral constant as well as variable-coefficient advection-diffusion benchmark problems

reveal that these DEM elements outperform their standard Galerkin and stabilized
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Galerkin counterparts of comparable computational complexity by a large margin,

especially when the flow is advection-dominated.
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Chapter 1

Introduction

The Navier-Stokes equations are the fundamental partial differential equa-

tions (PDEs) in fluid mechanics. These celebrated equations are useful in modeling

many physical phenomena of interest in modern day science and engineering appli-

cations. For example, they can help with the design of aircraft and cars, as they are

often used to model air flow around such vehicles. They can also be used to model

the weather, ocean currents, flow in a pipe or cavity, among many other things. Ob-

tained by considering the mass, momentum, and energy balances for an infinitesimal

control volume over which these principles apply, the equations describe the velocity,

pressure, temperature and density of a moving fluid. In dimensionless form, assum-

ing an incompressible Newtonian fluid, they state that the fluid velocity u ∈ R
d, for

d = 1, 2, 3 spatial dimensions, and the fluid pressure p satisfy

∂u
∂t

+ u · ∇u + ∇p− 1
Re

∆u = f ,

∇ · u = 0,
(1.1)

where Re is a dimensionless parameter known as the Reynolds number , and f ∈ R
d

is a vector of body forces.

Because the Navier-Stokes equations are, in practice, too difficult to solve using

analytic techniques, engineers and applied mathematicians have devoted a tremen-

dous effort to developing numerical methods to solve these equations approximately

1
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on a computer. The branch of fluid mechanics that uses numerical methods and al-

gorithms to solve and analyze fluid problems is known as Computational Fluid

Dynamics (CFD). Examples of some common numerical techniques in CFD, each

with its own strengths depending on the application, include spectral methods [2, 3],

finite difference methods [4], finite volume methods [5], and finite element

methods [6, 7, 8, 9, 10, 11, 12].

1.1 The finite element method (FEM) in fluid me-

chanics

The method developed in this dissertation falls in the family of numerical methods

known as finite element methods. The standard Galerkin finite element method is

based on a variational framework (or weak formulation), and a continuous, piece-

wise polynomial, Galerkin approximation. Since it was first developed in the field of

structural engineering during the 1940s, the Galerkin finite element method has been

applied to solve complicated engineering problems in a plethora of structural (e.g.,

stress analysis, buckling, vibrational analysis) as well as non-structural (e.g., heat

transfer, fluid flow, distribution of magnetic potential) applications [9]. One of the

main advantages of the FEM over other methods is its ability to handle very complex

geometries and varied boundary conditions. In addition, the theoretical framework

and approximation properties of the standard Galerkin FEM is at the present time

well established. It can be shown that the approach is optimal for the Laplace opera-

tor in the sense that it minimizes the error in the energy norm. This property assures

good performance of the computation for elliptic problems at any mesh resolution; in

other words, the method gives high coarse-mesh accuracy.

In deciding how to begin the task of building an accurate and efficient finite

element method for the Navier-Stokes equations, it is useful to write down a dis-

cretization of these equations, and remark that the advection-diffusion equation

−κ∆c(x)
︸ ︷︷ ︸

diffusion

+ a · ∇c(x)
︸ ︷︷ ︸

advection

= f(x), x ∈ Ω ⊂ R
d, d = 1, 2, 3, (1.2)
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arises in its vector form in the linearization steps of the discretization. This ob-

servation suggests that having a method that can solve the much simpler transport

problem (1.2) accurately and efficiently is essential to fluid mechanics applications.

It is well known that the standard FEM can be inadequate when applied to (1.2)

in certain regimes. The character of the solutions of (1.2) depends on the magnitude

of a dimensionless parameter known as the the Péclet number (Pe). The Péclet

number is defined by

Pe ≡ rate of advection

rate of diffusion
=
lΩ maxx∈Ω ||a(x)||

κ
= Re ·

{

Pr (thermal diffusion)

Sc (mass diffusion),

(1.3)

where Re, Pr and Sc are the Reynolds, Prandtl and Schmidt numbers respectively,

lΩ is a characteristic length scale of the domain Ω on which the problem is posed and

|| · || is some vector norm. At low values of Pe, diffusion dominates and the equation

is close to the elliptic Laplace equation. As κ → 0 (Pe → ∞), however, the exact

solutions of boundary value problems (BVPs) based on (1.2) exhibit boundary

layers, much like solutions to the Navier-Stokes equations in the high Reynolds num-

ber regime. A boundary layer is a very narrow region, typically near a physical

boundary or corner and having a width of O(Pe−1/2) [13], where the solution and its

derivatives change abruptly. In order to resolve the boundary layers that can form

using standard Galerkin piecewise polynomial finite elements, the mesh size would

have to be the same size as the ratio between the diffusion and convection [14]. In

many applications, this requirement leads to a huge number of degrees of freedom

(dofs), making the FEM not only inefficient, but sometimes simply unfeasible.

1.2 Alternatives to the classical Galerkin FEM for

advection-dominated flow problems

A number of different finite element approaches have been proposed for addressing

the challenge of solving (1.2) accurately and efficiently in the high Pe regime. These

alternatives to the standard FEM fall roughly into two categories: those based on a
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modified variational formulation, and those based on a modified finite element basis.

These methods are described briefly below.

One popular class of alternatives that falls into the first category of the methods

described above is the class of so-called stabilized finite element methods . Some

examples of stabilized finite elements methods are:

• The Streamline Upwind Petrov-Galerkin (SUPG, or Streamline Dif-

fusion) method [15, 16, 6].

• The Spotted Petrov-Galerkin (SPG) [17].

• The Galerkin Least-Squares (GLS) Method [18, 19].

• The Unusual Stabilized Finite Element Method (USFEM ) [20, 21].

• The Conformal Petrov-Galerkin (CPG) method [22, 23].

The basic idea of stabilized methods is to add weighted residual terms, representing

numerical (or artificial) diffusion, to the standard weak formulation of the problem

in order to enhance stability without losing consistency. The modification to the

standard Galerkin FEM is in the variational formulation only, as stabilized methods

rely on the same polynomial basis functions as those employed in the standard FEM.

In contrast with the first category of alternatives to the standard FEM, the sec-

ond category is essentially based on non-standard finite element bases. Examples of

methods that fall into this second category of methods are:

• The method of Residual-Free Bubbles (RFB) [24, 14].

• The Partition of Unity Method (PUM ) [25, 26].

• Variational Multi-Scale Methods (VMS) [27].

• Discontinuous Galerkin Methods (DGMs) [28, 29, 30, 31, 32, 33, 34].

The former three methods are conforming methods: the finite element spaces em-

ployed in these methods are constructed so that the solution produced by the methods

is automatically continuous. In contrast, DGMs constitute a class of finite element
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methods that use discontinuous functions to approximate the solution. The continu-

ity of the solution in these methods is often enforced weakly using a framework in

which appropriate numerical fluxes are defined and computed on the element bound-

aries [30, 31, 32]. DG methods can provide great advantages in solving problems with

solutions that exhibit shocks or discontinuities.

Remark 1.2.1. Although the two “classes” of methods described above are presented

as fundamentally different, there is a deep connection between some of the methods

in the former and the latter categories; cf. [35] for connections between multi-scale

formulations and stabilized FEMs, and between RFB and stabilized FEMs.

Remark 1.2.2. Note also that methods that cannot easily be placed into either one

of the two “classes” described above have been proposed. For instance:

• The Scharfetter-Gummel , or exponential-fitting, method, based on a change

of variables that transforms the advection-diffusion equation (1.2) into a ariable-

coefficient Poisson equation [36].

• Methods which use asymptotic analysis to construct approximate problems for

(1.2) in the streamline coordinates [13].

• The recently-proposed DG Petrov-Galerkin method, based on “optimal” discon-

tinuous test functions that are computed for each given BVP and guarantee

stability by effectively incorporating an upwind effect into the design of the test

function space [37].

1.3 The discontinuous enrichment method (DEM)

The method developed in this dissertation, referred to as the discontinuous en-

richment method (DEM ), falls into the second class of alternatives for the finite

element solution of (1.2) in an advection-dominated regime described above, namely

those in which non-standard finite element bases are constructed for approximating

the solution. DEM was motivated by PUM, RFB, the Finite Element Tearing and In-

terconnect (FETI) method for non-conforming domain decomposition with Lagrange
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multipliers [38, 39, 40, 41], as well as the work on discontinuous Galerkin methods

(DGMs) for second-order equations [28, 29, 42, 43]. The main idea of DEM is to

enrich the standard piecewise polynomial approximations by the non-conforming and

in general non-polynomial space of free-space solutions of the homogeneous form of

the governing PDE, obtained in analytical form using standard techniques such as

separation of variables. Since these functions are related to the problem being solved,

they have a natural potential for effectively resolving sharp gradients and rapid os-

cillations when these are present in the computational domain. However, since the

functions are not required to satisfy any local boundary conditions that would ensure

inter-element continuity, the method is by construction discontinuous; inter-element

continuity in DEM is enforced weakly using Lagrange multipliers. Due to this formu-

lation, DEM can be characterized as a hybrid finite element method : an FEM

with two unknown fields, a primal field and a secondary field, with the secondary

field defined on the element interfaces [12].

1.3.1 Comparison of DEM to other methods

The discontinuous enrichment method distinguishes itself from the methods that mo-

tivated it in several ways. Whereas RFB and PUM are continuous methods, DEM

is, by construction, discontinuous. Unlike in PUM, the enrichment in DEM is per-

formed in an additive rather than multiplicative manner. Unlike in RFB, it is not

constrained to vanish at the element boundaries and therefore can propagate its

beneficial effect to the neighboring elements. Unlike in both PUM and RFB, the en-

richment in DEM leads to a discontinuous, rather than a continuous, approximation

in which the enrichment dofs can be eliminated at the element level by a static con-

densation. This reduces the computational complexity of the method, and alleviates

some of the ill-conditioning that is inherent to most enriched methods – for example,

PUM, known to suffer from severe ill-conditioning that can make the method inef-

fective in practice [44, 1, 45]. The definition of the enrichment in DEM also allows

the method to circumvent both the difficulty in approximating the global fine-scale

Green’s function of VMS [27], and the loss of global effects suffered by RFB methods
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because of the requirement that the bubble functions have a vanishing trace on the

element boundaries. Although DEM can be classified as a discontinuous Galerkin

method (DGM), DEM distinguishes itself from earlier [28, 29] as well as recently

proposed [33, 34, 30, 31, 32, 37] DG methods either by its special shape functions,

which are typically non-polynomial, and/or by the Lagrange multiplier degrees of

freedom (dofs) it introduces at the element interfaces to enforce a weak inter-element

continuity of the numerical solution.

1.3.2 History of DEM and its success

DEM was first proposed approximately ten years ago by Farhat et al. [1]. Initially,

the method was developed for the Helmholz equation, Lu = −∆u − k2u = f , which

describes acoustic vibrations in a fluid medium. Since the Helmholtz operator tends to

lose ellipticity with an increasing wave number k, the Galerkin solution of Helmholtz

problems is tainted by spurious dispersion in the upper end of the low-frequency

regime, and is intractable in the medium and high frequency regimes.

Since it was first proposed, the discontinuous enrichment method has matured in

the following areas.

• Acoustic scattering (the Helmholtz equation) [46, 47].

• Wave propagation in elastic media (Navier’s equation) [48, 49].

• Fluid-structure interaction problems (coupling of Navier’s equation and the

Helmholtz equation) [50].

For these applications, the enrichment spaces consist of a superposition of plane

and/or evanescent waves. In general, it was found that DEM can achieve the same

accuracy as the p-finite element method [51] using a similar computational complexity

but with much fewer dofs. In [46], a family of three-dimensional (3D) hexahedral DEM

elements of increasing order of convergence was proposed for the solution of acoustic

scattering problems in the medium frequency regime. When compared with standard

high-order polynomial Galerkin elements of comparable convergence order, the DEM

elements achieved the same solution accuracy using, however, four to eight times
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fewer dofs, and most importantly, up to 60 times less CPU time [46]. More recently,

a domain decomposition-based iterative solver for 2D and 3D acoustic scattering

problems in medium/high frequency regimes has been developed, and shown to be

superior to the classical high-order finite element method [47]. This solver was shown

to be numerically scalable with respect to the mesh size as well as the number of

enrichment functions.

An attempt to bridge the gap between numerical experimentation and mathemat-

ical analysis was made by Amara et al. [52] in the specific context of the 2D low-order

DGM element with four plane waves first proposed in [1] for solving 2D Helmholtz

problems at relatively high wave numbers. This analysis resulted in a formal proof of

the convergence of this element and revealed its theoretical order of accuracy.

1.3.3 DEM for problems in fluid mechanics

The excellent performance of DEM for acoustic scattering and wave propagation

problems is the main motivation behind the present work, in which DEM is developed

for constant and variable-coefficient advection-diffusion transport problems (1.2) in

two-dimensions (2D). The development of this method for this equation can be viewed

as a first step towards the more challenging task of building a DEM for the key

equations in fluid mechanics, namely the Navier-Stokes equations (1.1). To this effect,

the body of this dissertation is organized as follows:

• In Chapter 2, the hybrid variational formulation of a canonical 2D advection-

diffusion boundary value problem discretized by DEM is presented. The ap-

proximation spaces for the primal unknown as well as the Lagrange multiplier

approximations are defined, and an efficient implementation procedure is out-

lined.

• Chapter 3 focuses on the derivation of the enrichment field. Several families

of enrichment functions for constant- as well as variable-coefficient transport

problems are derived.

• In Chapter 4, the method is developed specifically for the equation (1.2) with
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constant coefficients. Appropriate enrichment and Lagrange multiplier approx-

imation spaces are developed, and an algorithm that makes possible the sys-

tematic design and implementation of DEM elements of arbitrary orders is de-

scribed. The proposed DEM elements are evaluated on a number of challenging

constant-coefficient problems.

• In Chapter 5, attention is turned to the variable-coefficient advection-diffusion

equation (1.2). It is shown that the methodology developed specifically for

the constant-coefficient case (Chapter 4) has a natural extension to variable-

coefficient problems. It is also shown that, in the variable-coefficient scenario,

the approximation can be improved by augmenting the enrichment space with

additional families of free-space solutions to variants of the governing PDE, de-

rived in Chapter 3. The DEM elements developed in Chapter 5 are evaluated on

several challenging variable-coefficient problems possessing boundary, internal,

and crosswind layers, and compared to their Galerkin and stabilized Galerkin

counterparts.

• A summary of the method, the contributions of this dissertation, and some

discussion of possible future research directions is given in Chapter 6. The

development and numerical study of higher-order DEM elements is one of the

novel accomplishments presented in this dissertation, which distinguishes it from

prior works, namely [1, 53].

• A review of some fundamental concepts pertaining to the finite element method

can be found in the Appendix (Chapter 7).



Chapter 2

Theoretical framework of the

discontinuous enrichment method

(DEM)

In this chapter, the theoretical framework of the discontinuous enrichment meth-

od (DEM) is developed. This framework is presented in the context of a specific

boundary value problem (BVP) for the advection-diffusion equation (1.2). A brief re-

view of the classical Galerkin finite element method (FEM) and some of its stabilized

variants, based on the classical texts [6, 7, 8, 10, 54, 55], can be found in the Appendix

(Section 7.1). For additional reading on the theoretical framework of DEM, including

its formulation for other partial differential equations (PDEs) (e.g., the Helmholtz

equation), the reader is referred to the journal articles [1, 56, 57, 58, 46, 48, 50] and

the Ph.D. thesis of Oliveira [53].

10
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2.1 Functional settings and notation for a canon-

ical advection-diffusion boundary value prob-

lem

Let Ω ⊂ R
d, for d = 1, 2 or 3, be an open bounded domain with a Lipschitz con-

tinuous, smooth boundary Γ ≡ ∂Ω. As a canonical example, consider the following

all-Dirichlet boundary value problem (BVP) for the advection-diffusion equation in

its strong form (S).

(S) :







Find c : Ω̄ → R such that c ∈ H1(Ω) and

Lc ≡ −κ∆c+ a · ∇c = f in Ω,

c = g on Γ,

(2.1)

where Ω̄ denotes the closure of Ω. The diffusivity κ is assumed to be constant and

positive, and the advection field a(x) ∈ R
d in d = 1, 2, 3 spatial directions is assumed

to be continuous over the entire domain Ω, with its ith component denoted by ai(x),

for i = 1, ..., d. In (2.1), f : Ω → R and g : Γ → R are given functions specifying

a source and Dirichlet data respectively, and H1(Ω) denotes the Sobolev space of

order one. Recall that a Sobolev space of order m is the (vector) space of functions

Hm(Ω) ≡
{

v ∈ L2(Ω) :
∂(i+1)v

∂xi∂yj
∈ L2(Ω), 0 ≤ i+ j ≤ m

}

, (2.2)

equipped with the inner product

(u, v)m,Ω ≡ (u, v) ≡
∑

i,j

(
∂(i+j)u

∂xi∂yj
,
∂(i+j)v

∂xi∂yj

)

0,Ω

, (2.3)

and corresponding norm

||u||m,Ω ≡ (u, u)
1/2
m,Ω, (2.4)
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where L2(Ω) is the space of measureable, square integrable functions in Ω, equipped

with the inner product

(u, v)0,Ω ≡
∫

Ω

uvdΩ. (2.5)

From this point onwards, the subscript Ω will be dropped unless the domain of inte-

gration is a subset of Ω, e.g., ||u||m,Ω ≡ ||u||m.

The process of discretizing a linear BVP in its strong form (S), e.g. (2.1), by a

finite element method (FEM) consists of the following four steps [6].

Step 1: Constructing a triangulation Th of the domain, that is, partitioning

Ω into nel disjoint element domains Ωe, each with a boundary Γe ≡ ∂Ωe

(Figure 2.1), so that

Ω = ∪nel
e=1Ω

e with ∩nel

e=1 Ωe = ∅. (2.6)

Step 2: Obtaining the equivalent weak (or variational) form (W ) of (2.1).

Step 3: Projecting the continuous variational problem into a finite dimensional

space through finite element shape functions used to approximate the

solution, to yield a linear system of the form

Kd = F. (2.7)

Step 4: Solving the system (2.7) for the unknown degrees of freedom (dofs)

d.

The matrix K and vector F in (2.7) are commonly referred to as the stiffness matrix

and load vector respectively.

To define the weak or variational counterpart of (S) (2.1) (Step 2 above), two

classes of functions must be characterized: the space of trial (or candidate) func-

tions and the space of test (or weighting) functions , denoted commonly by S
and V respectively. In the classical Galerkin FEM (Section 7.1.1), given a partial
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Ω

Ωe

Γe

Figure 2.1: Decomposition of domain Ω into elements Ωe

differential equation (PDE) or order 2m, the spaces S and V are defined by:

S = {u : u ∈ Hm(Ω), u satisfies all essential (Dirichlet) BCs of the problem}, (2.8)

and

V = {u : u ∈ Hm(Ω), u satisfies all homogeneous essential (Dirichlet) BCs

of the problem} ,
(2.9)

where Hm(Ω) is the Sobolev space defined in (2.2). In the classical Galerkin FEM,

the basic requirements on the shape functions chosen to represent the solution to

ensure convergence are:

1. [Smoothness] The shape functions must be smooth (at least C1) on each

element interior, Ωe.

2. [Continuity] The shape functions must be continuous across each element

boundary Γe.

3. [Completeness] The space of shape functions must be complete (that is,

capable of exactly representing an arbitrary linear polynomial when the nodal
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degrees of freedom are assigned values in accordance with it).

A finite element method is known as a Galerkin finite element method when

S = V (modulo boundary conditions), that is, when the space of trial functions and

the space of test functions are the same. Otherwise, that is when S 6= V , the resulting

method is known as a Petrov-Galerkin finite element method .

As will become apparent in Section 2.2, the discontinuous enrichment method

(DEM) can be characterized as a hybrid finite element method , that is, a two

field mixed finite element method with the secondary unknown field defined at

the element interfaces [12]. The variational formulation of DEM will require the

introduction of some additional functional spaces, denoted by H−1/2(Γ) and H1/2(Γ).

The latter space is defined as

H1/2(Γ) = {g ∈ L2(Γ) : v|Γ = g, v ∈ H1(Ω)},
||g||1/2 = infv∈Vg |v|1, Vg = {v ∈ H1(Ω) : v|Γ = g},

(2.10)

where | · |1 denotes the following semi-norm in H1(Ω):

|v|21 ≡
∫

Ω

|∇v|2dΩ. (2.11)

The space H−1/2(Γ) is the dual space of H1/2(Γ), with its norm given by

||g′||−1/2 = sup
g∈H1/2(Γ)

〈g′, g〉
||g||1/2

= sup
v∈H1(Ω)

〈g′, v〉
|v|1

. (2.12)

Here, 〈·, ·〉 denotes the L2(Γ) inner product over the space of measurable, square

integrable functions on the domain Γ:

〈c, v〉 =

∫

Γ

cvdΓ. (2.13)



CHAPTER 2. THEORETICAL FRAMEWORK OF DEM 15

2.2 Hybrid variational formulation of DEM

To facilitate the presentation in this section, the following notation is introduced.

The union of element interiors and element boundaries will be denoted Ω̃ and Γ̃,

respectively,

Ω̃ = ∪nel

e=1Ω
e, Γ̃ = ∪nel

e=1Γ
e. (2.14)

The set of element interfaces (or interior element boundaries) will be denoted by

Γint = Γ̃\Γ, (2.15)

and the intersection between two adjacent boundaries Γe and Γe′ will be denoted by

Γe,e′ = Γe ∪ Γe′ . (2.16)

The formulation of DEM is obtained by rewriting the strong form (S) of the

BVP (2.1) in its weak variational form . To this effect, two functional spaces are

introduced

V ≡
{

v ∈ L2(Ω̃) : v|Ωe ∈ H1(Ωe)
}

, (2.17)

W = ΠeΠe′<eH
−1/2(Γe,e′) ×H−1/2(Γ). (2.18)

V is a space of element approximations of the solution and W is a space of Lagrange

multipliers . DEM is a Galerkin method, so that S = V ; that is, the space of test

and trial functions do not differ. Hence, from this point forward, both spaces will be

denoted by V (2.17).

A key feature of DEM is that the space of element approximations — that is, the

discrete analog of V (2.17) — is allowed to be discontinuous across element interfaces.

That is, the second property of the three shape function criteria enumerated in Section

2.1 (Smoothness, Continuity and Completeness) can be violated. Since it is typically

desired that the numerical solution remain continuous across the element interfaces

in some sense, the following inter-element continuity constraint is added to the BVP
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(2.1):

[[c(x)]] ≡
∣
∣
∣
∣

lim
[x∈Ωe]→Γe,e

′
c(x) − lim

[x∈Ωe
′
]→Γe,e

′
c(x)

∣
∣
∣
∣
= 0, x ∈ Γint. (2.19)

The constraint (2.19) may be enforced weakly using Lagrange multipliers or by the

penalty method. In DEM, the former weak enforcement is adopted – that is, (2.19)

is enforced weakly using Lagrange multipliers belonging to the space W (2.18).

The weak form of the BVP (2.1) is obtained first by multiplying the first equation

in (2.1) by a test function v ∈ V and integrating the diffusion term by parts:

∫

Ω

(−κ∆c+ a · ∇c)vdΩ = −κ
∫

Γ

(∇c · n
︸ ︷︷ ︸

≡Lbc
)vdΓ +

∫

Ω

(κ∇c · ∇v + a · ∇cv)dΩ. (2.20)

Here, Lb is the boundary operator corresponding to L. Constraining the solution to

remain continuous across the element interfaces, that is, the addition of the constraint

(2.19), leads to the following weak hybrid variational formulation

(W ) :







Find (c, λ) ∈ V ×W such that

a(v, c) + b(λ, v) = r(v) ∀v ∈ V ,
b(µ, c) = −rd(µ) ∀µ ∈ W ,

(2.21)

where a(·, ·) and b(·, ·) are bilinear forms on V × V and W ×V respectively. They

are given by

a(v, c) ≡ (κ∇v + va,∇c)Ω̃ =

∫

Ω̃

(κ∇v · ∇c+ va · ∇c)dΩ, (2.22)

b(λ, v) ≡
∑

e

∑

e′<e

∫

Γe,e
′
λ(ve′ − ve)dΓ +

∫

Γ

λv dΓ, (2.23)

In (2.21), r(v) and rd(µ) (d for “Dirichlet”) are the following linear forms

r(v) ≡ (f, v) =

∫

Ω

fvdΩ, (2.24)

rd(µ) ≡ 〈µ, g〉 =

∫

Γ

µgdΓ. (2.25)
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In (2.22) and (2.24), (·, ·) denotes the usual L2 inner product over Ω (2.5) and 〈·, ·〉
denotes the usual L2 inner product over Γ (2.13); in (2.23), ve ≡ v|Ωe . Note that the

bilinear form a(·, ·) in (2.22) is not symmetric
(
a(v, c) 6= a(c, v)

)
for the advection-

diffusion operator due to the presence of the first order advection term.

Remark 2.2.1. The variational form (2.21) is not unique. Assuming a is divergence-

free (or incompressible), that is ∇ · a = 0, the following identity holds:

a · ∇c = ∇ · (ac), (2.26)

so that

a · ∇c = αa · ∇c+ (1 − α)∇ · (ac), (2.27)

for α ∈ [0, 1]. Substituting (2.27) into the first equation in (2.1), multiplying this

equation by a test function v ∈ V, and performing an integration by parts not only on

the diffusion term but also the advection term (1 − α)∇ · (ac) gives:

∫

Ω
(−κ∆c+ a · ∇c)vdΩ =

∫

Γ
[(1 − α)a · nc− κ∇c · n] vdΓ

+

∫

Ω

[α(a · ∇c)v − (1 − α)(a · ∇v)c+ κ∇c · ∇v] dΩ
︸ ︷︷ ︸

aα(v,c)

.

(2.28)

Comparing (2.28) with (2.20), the reader may observe that the procedure just outlined

has resulted in a modified bilinear form aα(·, ·), defined in (2.28). The form (2.22) can

be recovered from (2.28) by setting α = 1, and is commonly referred to as the con-

vective form . When α = 1
2
, the form (2.28) is referred to as the skew-symmetric

form [59], due to the property that

ã(v, c) ≡ 1

2

∫

Ω

[(a · ∇c)v − (a · ∇v)c] dΩ (2.29)

is skew-symmetric, that is ã(c, v) = −ã(v, c).
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Remark 2.2.2. The weak form (W ) (2.21) is equivalent to a constrained minimiza-

tion problem, namely

minimize

s.t.

8

>

<

>

:

v ∈ V,

[[v]] = 0, on Γint,

v = g on Γ

J(v), (2.30)

where

J(v) ≡ 1

2
a1/2(v, v) − r(v) =

κ

2
(∇v,∇v) − r(v). (2.31)

(2.30) can be transformed into an unconstrained minimization problem [53, 1] through

the definition of the Lagrangian :

L(v, µ) ≡ J(v) + b(µ, v) + rd(µ), (2.32)

so that (2.30) is equivalent to

min
v∈V

max
µ∈W

L(v, µ). (2.33)

The saddle point equations for (2.33) give rise to the weak formulation (2.21) as well

as the Euler-Lagrange equations (2.34).

Denoting the jump at an element boundary by [[·]], the Euler-Lagrange equa-

tions corresponding to (W ) are

Lc ≡ −κ∆c+ a · ∇c = f in Ω̃,

[[c]] = 0 on Γint,

c = g on Γ,

λ = Lbc = ∇c · n on Γ̃.

(2.34)

The last equation in (2.34) provides an interpretation of the Lagrange multiplier field:

since for this problem the boundary operator Lb corresponding to L is the normal

derivative of the solution
(
see (2.20)

)
, the Lagrange multiplier field is the normal

derivative of the solution to the BVP (2.1) on the element interfaces.
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2.3 Approximation spaces in DEM

The finite-dimensional analog of the hybrid DEM formulation (2.21) is obtained by

selecting finite dimensional solution spaces for the primal unknown and dual Lagrange

multiplier fields, denoted respectively by

Vh ⊂ V , Wh ⊂ W , (2.35)

where h denotes the generic size of a typical element Ωe. Once the approximation

spaces Vh and Wh are constructed, an approximate solution (ch, λh) ∈ (Vh,Wh) of

the Galerkin problem corresponding to (2.21) is sought.

2.3.1 The primal approximation space Vh

In the classical Galerkin finite element method, the trial functions are continuous

piecewise polynomials within each element Ωe — that is, ch = cP with

cP ∈ VP ⊂ Pn(x, y) ⊂ H1(Ω), (2.36)

where

Pn(x, y) ≡
{

p ∈ H1(Ωe) : p(x, y) =
n∑

i=0

aix
iyi, (x, y) ∈ Ωe, ai ∈ R, n ∈ N

}

, (2.37)

is a polynomial interpolation space satisfying the three properties enumerated in

Section 2.1 (Smoothness, Continuity and Completeness). A popular class of shape

functions that satisfies these properties is the set of isoparametric shape func-

tions (Chapter 3 of [6]). These shape functions are reviewed briefly in Section 7.1.1

of the Appendix.

In DEM [1, 56, 57, 58, 46, 48, 50], the primal unknown ch which defines the

approximation space Vh has one of the following two forms

ch =

{

cP + cE, if f 6= 0 in (2.1) (true DEM element),

cE, if f ≡ 0 in (2.1) (pure DGM element).
(2.38)
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cP ∈ VP ⊂ H1(Ω) are standard, continuous, piecewise polynomial finite element

shape functions (2.36), and cE ∈ VE are the so-called enrichment functions .

The weak enforcement of continuity through the constraint (2.19) leaves much

flexibility as to the design of the space VE. At the heart of DEM is the idea that VE

should be designed in a way that incorporates some information about the particular

BVP being solved. To this effect, VE is defined in DEM as the set of free-space solu-

tions of the homogeneous PDE to be solved which are not represented in VP (so as to

avoid linear dependencies with functions already represented in VP ). Mathematically,

VE ⊂
{
LcE = 0 in R

d
}
, (2.39)

for a generic linear PDE Lc = f in d = 1, 2, 3 spatial dimensions.

As (2.38) suggests, two varieties of DEM can be defined: a true or “full” DEM,

and an enrichment-only DEM referred to in the remainder of this dissertation as

“DGM” (for discontinuous Galerkin method). In variational multiscale (VMS)

[27] terminology, the splitting of the approximation into polynomials and enrichment

functions, as done in the first line of (2.38), can be viewed as a decomposition of the

numerical solution into coarse (polynomial) and fine (enrichment) scales. Elements

for which the solution space Vh is constructed as a direct sum of VP and VE are

termed “full” or true DEM elements. The general rule of thumb is to employ these

elements when solving inhomogeneous problems, as the enrichment field defined by

(2.39) is not guaranteed to span the particular solutions to these PDEs. If the PDE

to be solved is homogeneous to begin with, however, the enrichment field (2.39)

may entirely capture the solution to the problem, rather than merely enhance the

polynomial field. This motivates the construction of so-called pure DGM elements
(
second line of (2.38)

)
, for which the contribution of the standard polynomial field

VP is dropped from Vh, resulting in improved computational efficiency without a loss

of accuracy (Section 2.4.3).

The careful reader may observe that in defining the enrichment space VE as in

(2.39), it has been assumed that the homogeneous free-space solutions to Lc = 0

are available in closed analytical form for the given operator L. In general, it is
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possible to obtain these solutions analytically primarily for linear PDEs with constant

coefficients. As discussed in detail in Chapter 5, since the enrichment functions in

DEM are to be employed at the element level, it is natural to use the solutions of the

constant-coefficient version of the PDE of interest — that is, use a fixed value of the

advection field a(x) ≡ a in (1.2) inside each element — to define the enrichment field

VE in the more general variable-coefficient context.

2.3.2 Babuška-Brezzi inf-sup condition

As DEM is a hybrid method, care must be taken to design the space Wh such that the

well known Babuška-Brezzi inf-sup condition [12, 55, 60], a necessary condition

for ensuring a non-singular global interface problem from the discrete form of (2.21),

is upheld. This condition is reviewed briefly in this section.

Recall the bilinear forms a : V × V and b : V × W defined in (2.22) and (2.23)

respectively. Let A : V → V and B : W → V denote linear bounded operators

associated with these forms, that is

a(v, c) = (v, Ac)V×V ,

b(λ, v) = (λ,Bv)W×W = (BTλ, v)V×V ,
(2.40)

where (·, ·)V×V and (·, ·)W×W denote the inner products on V ×V and W×W respec-

tively. It is well known [54] that

{

Ac+BTλ = f

Bc = 0,
(2.41)

has a unique solution, that is, is a well-posed problem, if

(i) The bilinear form a(·, ·) is coercive on kerB = {v ∈ V : b(µ, v) = 0,∀µ ∈ W}.

(ii) The map B is surjective.

If B has a closed range, typically (ii) can be replaced with the condition that BT is

injective. The condition (ii) is commonly referred to as the Babuška-Brezzi, or inf-sup

condition.
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To extend this condition to the discrete problem, let Ah : Vh → Vh and Bh :

Wh → Vh denote the discrete versions of the operators defined in (2.40). Then, the

following theorem describes the existence and uniqueness of solutions of the discrete

version of the variational problem (2.21) (Prop. II.2.1 in [12]).

Theorem 2.3.1. If there exists vh ∈ Vh such that b(µh, vh) = −rd(µ
h) for any

µh ∈ Wh and there exist positive constants α and γ independent of h such that

inf
ch∈KerBh

sup
vh∈KerBh

a(vh, ch)

||ch||V ||vh||V
≥ α, (2.42)

and

inf
µh∈Wh

sup
vh∈Vh

b(µh, vh)

||vh||V ||µh||W\KerBT

≥ γ, (2.43)

then the discrete analog of (2.21) has a unique solution (ch, λh) ∈ Vh ×Wh\KerBT
h ,

where
KerBh ≡ {vh ∈ Vh : b(µh, vh) = 0,∀µh ∈ Wh},
KerBT

h ≡ {µh ∈ Wh : b(µh, vh) = 0,∀vh ∈ Vh}.
(2.44)

Moreover,

||c− ch||V + ||λ− λh||Wh\KerBT
h
≤ C

(

inf
vh∈Vh

||c− vh||V + inf
µh∈Wh

||λ− µh||W
)

, (2.45)

for some constant C ∈ R.

Condition (2.43) is the discrete version of the as the Babuška-Brezzi or inf-sup

condition. Care must be taken to design the spaces Vh and Wh such that this con-

dition is upheld, as the failure of the condition can put into jeopardy the solvability

of the system arising from the discrete form of (2.21). An extensive survey for dis-

cretizing a Lagrange multiplier field of a form similar to that considered herein can

be found in Section 3.3 of [12]. Most, if not all, of these established techniques and

theoretical results are for standard polynomial approximations of the solution ch. Ex-

tending these ideas, namely designing the approximation spaces such that it can be

proven a priori that the bilinear form b(·, ·) satisfies the condition (2.43), to the typ-

ically non-polynomial approximations cE employed in DEM is not a straightfoward
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task. Some progress has been made by Amara et al. in the context of low-order

DEM elements for the Helmholz equation and plane wave enrichment functions [52],

but the task of showing that (2.42) holds for the advection-diffusion DEM elements

developed in this dissertation remains an open problem at the present time.

The elements proposed in this dissertation are developed to satisfy an inf-sup

condition for the discrete, finite dimensional problem of (2.21). This algebraic inf-

sup condition is a necessary condition for (2.43) to hold. By inspection, assuming

without loss of generality that g = 0, it is straightforward to see that this (global)

system will have the form:

(

A BT

B 0

)(

ch

λh

)

=

(

f

0

)

, (2.46)

where ch ∈ R
n and λh ∈ R

p are vectors containing the primal unknown and Lagrange

multiplier unknown dofs respectively, so that the matrices A and B are n × n and

p× n respectively, and f ∈ R
n, for n, p ∈ N are the number of enrichment equations

and the number of Lagrange multiplier equations, respectively. It is possible to derive

conditions on Vh and Wh for this discrete condition to hold by examining the matrix

form of the problem arising from the discretization of (2.21). The system (2.46) has

no solution if is it over-determined (and inconsistent). The matrix A represents the

global stiffness matrix and must be non-singular by construction. It is straightforward

to see, from basic linear algebra, that, assuming A is non-singular, (2.46) is overde-

termined if p > n. The outcome of this condition puts the following bound on the

dimension of the Lagrange multiplier approximation space Wh given an enrichment

space VE of nE linearly independent basis functions:

{

# of enrichment

equations

}

≥
{

# Lagrange multiplier

constraint equations

}

. (2.47)

Assuming a mesh of nel = n2 quadrilateral elements, with nE enrichment functions

in each element, and nλ Lagrange multiplier approximations per edge, the left hand

side of (2.47) is nEn2 and the right hand side is 2n(n + 1)nλ, so that (2.47) implies
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that

nEn2 ≥ 2n(n+ 1)nλ ≈ 2n2nλ. (2.48)

It follows from (2.48) that the asymptotic bound on the number of Lagrange multi-

pliers per edge (nλ) is given by

nλ ≤ nE

2
, (2.49)

almost everywhere in the mesh.

In Section 2.3.3, a space of Lagrange multiplier approximations for the 2D advection-

diffusion equation that is related to the normal derivatives of the enrichment functions

cE on the element edges in a well-defined way is constructed, taking care to limit its

cardinality to avoid violating the bound (2.49).

Remark 2.3.2. The condition (2.49) is a necessary, but in general not a sufficient,

condition for ensuring that a non-singular global interface problem arises in the ap-

plication of the DEM on a mesh of quadrilateral elements. In practice, fewer than

nλ = nE

2
Lagrange multipliers per edge will be used. Numerical tests (Sections 4.5 and

5.6) show that the general rule of thumb is to limit

nλ =

⌊
nE

4

⌋

, (2.50)

where bxc ≡ max{n ∈ Z|n ≤ x} for any x ∈ R.

Remark 2.3.3. Another algebraic version of the inf-sup condition (2.43) is kerBT =

0. If this holds, (2.46) will be an under-determined system with an infinite number

of solutions. This can result in the presence of spurious modes in the computation

(Chapter 4 of [54]).

2.3.3 The dual space of Lagrange multiplier approximations

Wh

An expression for the Lagrange multiplier approximations constituting the space Wh

given an approximation space Vh can be derived from the weak form (2.21) using some
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variational calculus. Applying the bilinear form a(·, ·) defined in (2.22) to c, v,∈ V
and integrating by parts the

∫

Ω̃
∇v · ∇cdΩ term gives

a(c, v) =

∫

Ω̃

(−κ∆c+a·∇c)vdΩ+

∫

Γ

κ∇c·nvdΓ+
∑

e

∑

e′

∫

Γe,e
′
κ(∇ce·neve+∇ce′ ·ne′ve′)dΓ,

(2.51)

where ne is the outward unit normal to Γe (and similarly for ne′ and Γe′). Substituting

(2.51) into the first equation in the weak form (2.21) leads to

λ = ∇ce · ne = −∇ce′ · ne′ on Γe,e′ , (2.52)

and

λ = −∇c · n on Γ, (2.53)

if a Dirichlet boundary condition is to be enforced on Γ. (2.52) suggests choosing

λh ≈ ∇cEe · ne = −∇cEe′ · ne′ on Γe,e′ , (2.54)

as a good approximation of the Lagrange multiplier on an edge Γe,e′ ; that is, defining

the space Wh to consist of the approximate normal derivatives of cE on the element

edges – but being careful not to violate the bound (2.49) arising from the discrete form

of the Babuška-Brezzi inf-sup condition (2.43). In practice, the number of Lagrange

multiplier approximations allowed per edge given nE enrichment functions will be set

according to the rule of thumb (2.50) (Remark 2.3.2).

2.4 Galerkin formulation and implementation of

DEM

Assuming the more general case of the full DEM and substituting the approximation

ch (the first row of (2.38)) into the weak form (2.21) results in the following discrete
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Galerkin problem

(G) :







Find (ch, λh) ∈ Vh ×Wh such that

a(vP , cP ) + a(vP , cE) + b(λh, vP ) = r(vP ),

a(vE, cP ) + a(vE, cE) + b(λh, vE) = r(vE),

b(µh, cP ) + b(µh, cE) = −rd(µ
h),

holds ∀(vh, µh) ∈ Vh ×Wh.

(2.55)

The above system of Galerkin equations (G) gives rise to the element matrix equation







kPP kPE kPC

kEP kEE kEC

kCP kCE 0







︸ ︷︷ ︸

≡ke







cP

cE

λh







=







rP

rE

rC







︸ ︷︷ ︸

≡re

, (2.56)

where cP , cE and λh are vectors containing the local dofs cP , cE and λh, respectively.

The superscript e designates the element domain and the superscript C designates

the continuity constraints enforced by the Lagrange multipliers. The correspondence

between the matrices and the Galerkin equations is obtained by comparing (2.55) and

(2.56), and is summarized in Table 2.1.

Note that kEP 6= kPET as a result of the asymmetry of the bilinear form a(·, ·)
for the advection-diffusion operator. In the case of a pure DGM implementation,

kPP, kPE, kPC, kEP, kCP, rP = {∅} (that is, they are empty and can be omitted)

and therefore the three-by-three block system (2.56) reduces to a two-by-two block

system, namely
(

kEE kEC

kCE 0

)(

cE

λh

)

=

(

rE

rC

)

. (2.57)

2.4.1 Integration of a(·, cE)

If the enrichment field VE is comprised of free-space solutions to (2.1), the volume

integrals appearing in the bilinear forms a(·, cE) (2.22) can be converted to integrals
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Table 2.1: Correspondence between the local matrices in (2.56) and the bilinear/linear
forms in (2.55)

Matrix Galerkin Term
kPP a(vP , cP )
kPE a(vP , cE)
kPC 〈vP , λh〉Γint

kEP a(vE, cP )
kEE a(vE, cE)
kEC 〈cE, λh〉Γint

kCP 〈µh, cP 〉Γint

kCE 〈µh, cE〉Γint

rP r(cP )
rE r(cE)
rC −rd(λ

h)

over the edges of each element. That is, if LcE = 0, then, for vh ∈ Vh:

0 =

∫

Ωe
[a · ∇cE − κ∆cE]vhdΩ =

∫

Ωe
[a · ∇cEvh + κ∇cE∇vh]dΩ

︸ ︷︷ ︸

a(vh,cE)Ωe

−κ
∫

Γe
∇cE · nvhdΓ.

(2.58)

Rearranging (2.58) gives

a(vh, cE)Ωe = κ

∫

Γe
∇cE · nvhdΓ. (2.59)

Thus, integration in element domains can be replaced by integration along element

boundaries. It follows that, from Table 2.1, in the case of a homogeneous constant-

coefficient BVP and a pure DGM element, no volume integrals need to be computed

at all.

2.4.2 Static condensation at the element level

Due to the discontinuous nature of VE, cE can be eliminated at the element level by

a static condensation . For a full DEM element, taking the Schur complement of

the second equation in (2.56) and substituting this expression into the first and third
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equations leads to the following (local) statically-condensed system

(

k̃PP k̃PC

k̃CP k̃CC

)

︸ ︷︷ ︸

≡k̃e

(

cP

λh

)

=

(

r̃P

r̃C

)

︸ ︷︷ ︸

≡r̃e

, (2.60)

where

k̃PP = kPP − kPE(kEE)−1kEP, (2.61)

k̃PC = kPC − kPE(kEE)−1kEC, (2.62)

k̃CP = kCP − kCE(kEE)−1kEP, (2.63)

k̃CC = −kCE(kEE)−1kEC, (2.64)

and

r̃P = rP − kPE(kEE)−1rE, (2.65)

r̃C = rC − kCE(kEE)−1rE. (2.66)

In the case of a DGM element, there is no polynomial field and therefore k̃PP,

k̃PC, k̃CP, r̃P = {∅}. Since k̃CC reduces to k̃CC = −kCE(kEE)−1kEC, the statically-

condensed system for a DGM element is therefore simply

−kCE(kEE)−1kEC

︸ ︷︷ ︸

=ke=k̃CC

λh = rC − kCE(kEE)−1rE

︸ ︷︷ ︸

=r̃e=r̃C

. (2.67)

Equations (2.60) and (2.67) give rise either to a cP -λh formulation for the full

DEM approximation, or simply to a λh-formulation for its DGM variant. The global

condensed system is obtained from an assembly of the statically-condensed element

arrays k̃e and r̃e. From this system, the Lagrange multiplier dofs, and, when ap-

plicable, the polynomial dofs, are solved for, after which the enrichment dofs are

computed by means of a post-processing step local to each element. The key steps of

this implementation are summarized in Algorithm 1.
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Algorithm 1 Element-level static condensation algorithm

Compute the entries of the element matrices in (2.56) (Table 2.1).
Compute the local Schur complements in (2.61)-(2.66).
Assemble the global interface problem (2.60).
Solve for the vector λh (and the vector cP, if applicable, i.e., in the case of the full
DEM).
for each element Ωe, e = 1, . . . , nel do

Compute cE as a post-processing step within Ωe as follows

kEEcE = rE − kEPcP − kECλh, (2.68)

(with kEP = {∅} in the case of a DGM element.)
end for

2.4.3 Computational complexity

An important remark at this point in the discussion is that the cost of solving the

global interface problem (2.60) is not directly determined by the dimension of VE.

Instead, it depends on the total number of Lagrange multiplier dofs — that is, on

dimWh. This property is a result of the element-level static condensation which is

enabled by the discontinuous nature of the approximation of the solution (Section

2.4.2). As discussed in Section 2.3.2, the Babuška-Brezzi inf-sup condition must be

satisfied to ensure that the global interface problem is non-singular. In particular, by

(2.49), the dimension of the space Wh will necessarily be less than the dimension of

the primal unknown space VE. Note that this property brings a major computational

advantage over PUM [25, 26].

Table 2.2 summarizes the computational complexities of some DGM and DEM el-

ements having nλ Lagrange multipliers per edge, compared to their standard quadri-

lateral Galerkin FEM counterparts, denoted by Qn (described in Section 7.1.1 of the

Appendix), for n = 1, 2, 3, 4. The table reports also the elements’ stencil widths

assuming an n × n uniform mesh of quadrilateral elements. The stencil width is

essentially the maximum number of non-zero entries in the rows of the global system

matrix that comes from assembling the local matrices (2.60). Figure 2.2 illustrates the

stencils of a first order Galerkin quadrilateral element, referred to as Q1, and a pure

DGM element having nλ = 1 Lagrange multiplier approximations per element edge.
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The reader may observe by examining Table 2.2 that the stencil width of a DGM

element with nλ Lagrange multipliers per edge is smaller than that of a Galerkin

element Qnλ element; however the pure DGM element contains nel more total dofs.

As computational complexity depends on the total number of dofs and the sparsity

pattern of the system matrices (measured by the finite element stencil width), it can

be reasonably assumed that the computational complexities of a pure DGM element

with nλ Lagrange multipliers is roughly comparable to the computational complexity

of a Galerkin Qnλ element.

(a) Q1 (b) DGM element with nλ = 1

Figure 2.2: Illustration of stencils for first order Galerkin and DGM elements

2.5 Linear least squares “qualifying test” for en-

richment functions

The enrichment in DEM, defined as the set of free-space solutions to the governing

constant-coefficient homogeneous PDE, is intuitively appealing, as these solutions are

related to the operator governing the problem to be solved. Unlike the standard finite

element polynomial interpolants, however, it is unclear what can be said about the

completeness property of a proposed enrichment space (Property 3 in Section 2.1).

The following question arises: how capable are the enrichment functions comprising

VE of representing the exact (or reference) solution to a particular BVP?

Given an exact (or reference) solution to a BVP, the answer to this question can be

studied a posteriori by formulating and solving the following linear least squares
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Table 2.2: Computational complexity of some DGM, DEM and standard Galerkin
elements (assuming a discretization into nel quadrilateral elements)

Element Asymptotic # of dofs
Stencil width for

uniform n× n mesh

Galerkin

Q1 nel 9
Q2 3nel 21
Q3 5nel 33
Q4 7nel 45

DGM with

nλ = 1 2nel 7
nλ = 2 4nel 14
nλ = 3 6nel 21
nλ = 4 8nel 28

DEM with

nλ = 1 3nel 21
nλ = 2 5nel 33
nλ = 3 7nel 45
nλ = 4 9nel 57

(LLS) optimization problem in each element Ωe

min
aei∈R

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

nE∑

i=1

ae
i c

E,e
i (x) − ceref(x)

︸ ︷︷ ︸

r≡Ay−b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
2

, x ∈ R
2. (2.69)

Here, ceref is a reference (or exact) solution to a particular BVP in element Ωe, the

ae
i are the computed enrichment degrees of freedom, and cE,e

i (x) are the enrichment

functions inside that element. If the norm in (2.69) is taken to be the discrete vector

two-norm, the (2.69) can be solved using the singular value decomposition (SVD). In

particular, if A = UΣVT is the SVD of the matrix A defined in (2.69), then this
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argument can be written as:

||Ay − b||2 = ||UΣVTy − b||2
= ||U[ΣVTy − UTb]||2
= ||ΣVTy

︸︷︷︸

≡z

−UTb
︸︷︷︸

≡b′

||2.
(2.70)

From (2.70), it is straightforward to see that that the solution to (2.69) is y = Vz

where, letting zi and b′i denote the ith entry of the vectors z and b respectively, and

letting σi denote the ith singular value of A,

zi =
b′i
σi

, i = 1, ..., r ≡ rank(Σ). (2.71)

The minimum value of the residual in (2.69) is

||r||2 =
n∑

i=r+1

b′i, (2.72)

where n is the number of points at which x is sampled in element Ωe.

The solution to (2.69) gives some insight into how well the enrichment functions

employed in element Ωe are capable of representing the reference solution in that

element. Provided a reference solution (or some solution believed to be similar in

character to the exact solution to a BVP) is available, it can be worthwhile, especially

for variable-coefficient problems, to perform the test (2.69) for a proposed enrichment

basis of functions {cEi (x)} prior to implementing DEM in order to determine if the

proposed enrichment functions are capable of representing the reference solution to

the problem better than the standard Galerkin polynomial shape functions.

Remark 2.5.1. The LLS test described here is used to provide justification for omit-

ting certain classes of free-space solutions (derived in Chapter 3) – namely functions

with behavior deemed uncharacteristic of the solution to the boundary value problems

considered herein – from the design of the space VE.



Chapter 3

Free-space solutions to the 2D

advection-diffusion equation

In this chapter, several families of free-space solutions to the advection-diffusion equa-

tion (1.2) in two-dimensions (2D) are derived. These functions will be used to define

the enrichment spaces VE of various DGM and DEM elements in subsequent chapters.

3.1 Free-space solutions to the 2D advection-diff-

usion equation with constant a ∈ R
2

First, some free-space solutions to the constant-coefficient version of (1.2) are derived.

These solutions fall into three families:

1. Functions that are exponential in both the x- and y-coordinate directions.

2. Functions that are exponential in one variable and trigonometric in the other.

3. Polynomial functions.

The first two families are derived by the standard PDE solution technique known as

separation of variables (Section 3.1.1); the third is derived by assuming a finite

power series solution and solving a system of equations for the unknown coefficients

in this series (Section 3.1.2).

33
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3.1.1 Separation of variables solutions

Suppose aT = (a1, a2) ∈ R
2, and assume the following functional form for the

solution to LcE = −κ∆cE + a · ∇cE = 0:

cE(x, y) = F (x)G(y). (3.1)

Here, F,G : R → R are some C2(R) functions that will be determined such that

LcE = 0 is satisfied. Substituting (3.1) into (1.2) implies

a1

κ
F ′(x) − F ′′(x)

F (x)
=
G′′(y) − a2

κ
G′(y)

G(y)
≡ k ∈ R. (3.2)

(3.2) can be decomposed into the following two ordinary differential equations (ODEs)

for the functions unknown F (x) and G(y), to be determined

F ′′(x) − a1

κ
F ′(x) + kF (x) = 0,

G′′(y) − a2

κ
G′(y) − kG(y) = 0.

(3.3)

The solutions to (3.3) are span{Fk(x)} and span{Gk(y)}, where

Fk(x) =







exp

{

a1x
2κ

±
√

a2
1−4kκ2

2κ
x

}

if k ≤ a2
1

4κ2 ,

exp

{

a1x
2κ

± i
√

−a2
1+4kκ2

2κ
x

}

if k >
a2
1

4κ2 ,
(3.4)

Gk(y) =







exp

{

a2y
2κ

±
√

a2
2+4kκ2

2κ
y

}

if k ≥ − a2
2

4κ2 ,

exp

{

a2y
2κ

± i
√

−a2
2−4kκ2

2κ
y

}

if k < − a2
2

4κ2 ,
(3.5)

and i ≡
√
−1. The form of the solution (3.1) thus depends on the value of the

separation of variables constant k relative to the given advection velocities a1 and

a2. The expressions (3.4) and (3.5) imply that the solution can take on one of three

forms, summarized in Table 3.1. In the first case, the enrichment function cE is a

rapidly rising or falling exponential in both the x- and y-coordinate directions. In the



CHAPTER 3. FREE-SPACE SOLUTIONS TO 2D ADVECTION-DIFFUSION 35

second and third cases, the enrichment is oscillatory in one direction.

Table 3.1: Forms of the free-space solution cE to a · ∇cE − κ∆cE = 0

k Fk(x) Gk(y)

∈
[

− a2
2

4κ2 ,
a2
1

4κ2

]

Exponential Exponential

∈
(

−∞,− a2
2

4κ2

)

Exponential Trigonometric

∈
(

a2
1

4κ2 ,∞
)

Trigonometric Exponential

While the expressions in (3.4)–(3.5) are correct mathematically and cE
k (x, y) =

Fk(x)Gk(y) solves LcEk = 0 for any choice of k ∈ R, there is a practical issue that is

worth addressing: it is unclear how the parameter k should be selected to generate

a particular enrichment basis, since this parameter can take on any real value from

−∞ to ∞. To this effect, it is recalled here that when DEM was tailored to the 2D

Helmholtz equation −∆c − k2c = 0 in [56], the enrichment space VE consisted of a

superposition of two-dimensional plane waves cE|Ωe = eikx cos θpeiky sin θp (where, again,

i ≡
√
−1), propagating in directions θp ∈ [0, 2π). The fact that the basis functions

for the Helmholtz equation were specified by an angle proved to be very convenient

as it made possible the systematic design of DEM elements of arbitrary orders: to

design an element of order nE, one simply selected nE plane waves propagating in nE

different directions. Guided by DEM for the Helmholtz equation, an expression for

cE is sought after here in which the constant k is replaced by some angle parameter.

The derivation of a parametrization of this sort is detailed below.

Case 1: Free-space solutions that are exponential in x and y

Suppose k ∈
[

− a2
2

4κ2 ,
a2
1

4κ2

]

. Defining µ1, µ2 ∈ R by

µ2
1 ≡ a2

2 + 4kκ2, µ2
2 ≡ a2

1 − 4kκ2, (3.6)
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the following identity holds

µ2
1 + µ2

2 = a2
1 + a2

2 ≡ |a|2. (3.7)

Relation (3.7) motivates the following definition

µ1 ≡ |a| cos θk, µ2 ≡ |a| sin θk, (3.8)

for some angle parameter θk ∈ [0, 2π). Given this parameterization, equations (3.4)

and (3.5) can be rewritten in terms of µ1 and µ2 as

Fk(x) = exp
{a1x

2κ
± µ1

2κ
x
}

, Gk(y) = exp
{a2y

2κ
± µ2

2κ
y
}

, (3.9)

so that

cE(x; θk) = span

{

e

“

a1±|a| cos θk
2κ

”

x
e

“

a2±|a| sin θk
2κ

”

y

}

. (3.10)

The natural interpretation of the angles θk is that they are flow directions. Each

angle θk that appears in (3.10) specifies a function that “slopes” — that is, exhibits

a sharp gradient — in some direction in R
2. Figure 3.1 shows plots of the enrichment

basis functions for several angles θk.

Remark 3.1.1. The parametrization of the exponential free-space solutions (3.10)

has a natural extension to the constant-coefficient advection-diffusion equation (1.2)

in three dimensions (3D) (Section 7.2 of the Appendix).

Case 2: Free-space solutions that are exponential in x and trigonometric

in y

Suppose k < − a2
2

4κ2 . It follows that a2
1 − 4kκ2 > 0 and a2

2 + 4kκ2 < 0. Defining µ3 and

µ4 as follows

µ2
3 ≡ a2

1 − 4kκ2 > 0, µ2
4 ≡ −a2

2 − 4kκ2 > 0, (3.11)

the following identity holds

µ2
3 − µ2

4 = a2
1 + a2

2 = |a|2. (3.12)
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(a) θk = 0 (b) θk = π
2

(c) θk = π (d) θk = 3π
2

Figure 3.1: Plots of free-space solutions cE(x; θk) to the constant-coefficient advect-
ion-diffusion equation for Case 1 (a1/κ = 20, a2/κ = 0)
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(3.12) motivates the definition of the following parametrization for Case 2:

µ3 ≡ |a| sec θk, θk 6= nπ
2
, n ∈ Z, (3.13)

µ4 ≡ |a| tan θk, θk 6= nπ
2
, n ∈ Z. (3.14)

Now, (3.4) and (3.5) can be rewritten in terms of µ3 and µ4 using (3.11):

Fk(x) = exp
{a1x

2κ
± µ3

2κ
x
}

, Gk(y) = exp
{a2y

2κ
± i

µ4

2κ
y
}

, (3.15)

so that

cE(x; θk) = span

{

e

“

a1+|a| sec θk
2κ

”

x
e

“

a2+i|a| tan θk
2κ

”

y

}

. (3.16)

Using Euler’s identity, (3.16) is equivalent to

cE(x; θk) = span

{

e

“

a1+|a| sec θk
2κ

”

x
e
a2
2κ

y sin

( |a| tan θk

2κ
y

)}

. (3.17)

Several representative functions (3.17) are plotted in Figure 3.2.

Case 3: Free-space solutions that are trigonometric in x and exponential

in y

Suppose k >
a2
1

4κ2 . Now a2
1 − 4kκ2 < 0, so that −a2

1 + 4kκ2 > 0, and a2
2 + 4kκ2 > 0.

Defining µ5 and µ6 by

µ2
5 ≡ −a2

1 + 4kκ2 > 0, µ2
6 ≡ a2

2 + 4kκ2 > 0. (3.18)

the following identity holds

µ2
6 − µ2

5 = a2
1 + a2

2 = |a|2. (3.19)

Letting θk be an angle between 0 and 2π, define

µ5 ≡ |a| tan θk, θk 6= nπ
2
, n ∈ Z, (3.20)
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(a) θi = π
4

(b) θi = 3π
4

(c) θi = 5π
4

(d) θi = 7π
4

Figure 3.2: Plots of free-space solutions cE(x; θi) to the constant-coefficient advect-
ion-diffusion equation for Case 2 (a1/κ = 20, a2/κ = 0)
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µ6 ≡ |a| sec θk, θk 6= nπ
2
, n ∈ Z. (3.21)

In this case, (3.4) and (3.5) can be written in terms of µ5 and µ6 as

Fk(x) = exp

{
a1x

2κ
± iµ5

2κ
x

}

, (3.22)

Gk(y) = exp
{a2y

2κ
± µ6

2κ
y
}

, (3.23)

so that

cE(x; θk) = span

{

e

“

a1+i|a| tan θk
2κ

”

x
e

“

a2+|a| sec θk
2κ

”

y

}

, (3.24)

or, employing Euler’s identity,

cE(x; θk) = span

{

e
a1
2κ

x sin

( |a| tan θk

2κ
x

)

e

“

a2+|a| sec θk
2κ

”

y

}

. (3.25)

The functions (3.25) are shown in Figure 3.3 for several angles θk.

3.1.2 Polynomial solutions

There exists also a family of polynomial free-space solutions to (1.2) with spatially-

constant a. The two lowest degree polynomials that solve this PDE can be found by

inspection:

cE1 = 1, (3.26)

cE2 = |ã × x| = |ã2x− ã1y|, (3.27)

in 2D (up to an additive and multiplicative constant), where

ã ≡ a

κ
. (3.28)

Higher degree polynomial free-space solutions to (1.2) can be derived as well. In

general, an nth degree polynomial of the form

cEn (x, y) = |ã × x|n + fn(x, y), (3.29)
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(a) θi = π
4

(b) θi = 3π
4

(c) θi = 5π
4

(d) θi = 7π
4

Figure 3.3: Plots of free-space solutions cE(x; θi) to the constant-coefficient advect-
ion-diffusion equation for Case 3 (a1/κ = 20, a2/κ = 0)
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solves (1.2) where fn is an (n− 1) order polynomial that satisfies

Lfn = n(n− 1)(ã2x− ã1y)
n−2|ã|2. (3.30)

Solutions to (3.30) can be obtained by assuming the following functional form for fn

fn(x, y) =
n−1∑

m=0

m∑

k=0

ckmx
m−kyk, (3.31)

substituting (3.31) into (3.30), matching coefficients and solving a linear system for

the coefficients ckm. Although this algebra is admittedly cumbersome, it is possible to

semi-automate the derivation process using a symbolic software, such as Maple [61]

or MATLAB’s [62] symbolic toolbox. The second through fifth degree polynomial

solutions to (1.2) derived in this way are given below.

cE2 = (ã2x− ã1y)
2 + 2(ã · x), (3.32)

cE3 = (ã2x− ã1y)
3 + 6(ã2x− ã1y)(ã · x), (3.33)

cE4 =







(ã2x− ã1y)
4 + 8 ã1 ã

2
2x

3 + (−12 ã2
1 − 12 ã2

2)x
2+

(12 ã3
2 − 12 ã2

1ã2) yx
2 +

(

24
ã3
1

ã2
+ 24 ã1 ã2

)

yx−
24 ã1 ã

2
2xy

2 +
(

4
ã4
1

ã2
+ 12 ã2

1ã2

)

y3 + (12 ã2
1 + 12 ã2

2) y
2, if ã2 6= 0

ã4
1y

4 + 12 ã3
1xy

2 + 1
6
ã3

1y
3 + 12 ã2

1x
2 + ã2

1xy − 12 ã2
1y

2, if ã2 = 0

, (3.34)

cE5 = (ã2x− ã1y)
5 + 20ã1ã

3
2x

4 + (−60ã2
1ã

2
2 + 20ã4

2)x
3y + (60ã3

1ã2 − 60ã1ã
3
2)x

2y2−
20ã2

1(−3ã2
2 + ã2

1)xy
3 − 20ã3

1ã2y
4 + 20ã2(3ã

2
1 − ã2

2)x
3 + (−60ã3

1 + 180ã2
2ã1)x

2y−
60ã2(3ã

2
1 − ã2

2)xy
2 + (20ã3

1 − 60ã2
2ã1)y

3.

(3.35)

The functions (3.27) and (3.32)–(3.35) are shown in Figure 3.4 for some specified

values of a1, a2 and κ.

Remark 3.1.2. A careful inspection of polynomial free-space solutions to (1.2) up to

degree nine suggests that there is only one linearly independent polynomial that solves
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(a) Degree 1 (b) Degree 2

(c) Degree 3 (d) Degree 4

(e) Degree 5

Figure 3.4: Plots of polynomial free-space solutions to the constant-coefficient adve-
ction-diffusion equation (a1/κ = 10, a2/κ = 5)
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(1.2) of each order. In particular, assuming a polynomial of the form

cEn (x, y) =
n∑

m=0

m∑

k=0

ckmx
m−kyk (3.36)

instead of the more specific functional form (3.29) yields the same polynomial, up to

an additive and/or multiplicative constant.

3.2 Free-space solutions to the 2D advection-diff-

usion equation with a(x) = Ax + b

Consider now an advection-diffusion equation in which the advection field is linear in

x, that is:

[Ax + b] · ∇cE − ∆cE = 0, (3.37)

where A is a constant 2× 2 matrix, and b ∈ R
2 is a vector of constants1. Assume A

is diagonalizable, and let vi for i = 1, 2 be the eigenvectors of AT , with corresponding

eigenvalues2, denoted by σi:

ATvi = σivi. (3.38)

It is possible to derive analytically free-space solutions to the variable-coefficient

advection-diffusion equation (3.37).

Define first the change of variables, for i = 1, 2:

zi ≡ vi · x = vi(1)x+ vi(2)y, (3.39)

where vi(j) denotes the jth component of the eigenvector vi for j = 1, 2, so that, by

the chain rule: (
∂
∂x
∂
∂y

)

=

(
∂zi
∂x

∂
∂zi

∂zi
∂y

∂
∂zi

)

=

(

vi(1)
∂

∂zi

vi(2)
∂

∂zi

)

, (3.40)

1Note that the diffusivity κ in (3.37) has been absorbed into the matrix A and vector b.
2Note that there is no implied summation on repeated indices i in (3.38) and the subsequent

expressions in Section 3.2.
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or

∇x = vi
∂

∂zi

, (3.41)

for i = 1, 2. Also by the chain rule,

∂2

∂x2
=

∂

∂x

(
∂

∂x

)

=
∂zi

∂x

∂

∂zi

(
∂

∂x

)

= vi(1)
∂

∂zi

(

vi(1)
∂

∂zi

)

= v2
i (1)

∂2

∂z2
i

, (3.42)

and similarly
∂2

∂y2
= v2

i (2)
∂2

∂z2
i

, (3.43)

so that
∂2

∂x2
+

∂2

∂y2
= |vi|2
︸︷︷︸

=1

∂2

∂z2
i

=
∂2

∂z2
i

, (3.44)

assuming the eigenvectors of A have been normalized.

Now, substituting (3.44), (3.41) and (3.38) into (3.37) gives

[xTAT + bT ]vi
∂c

∂zi

− ∂2c

∂z2
i

= [xT ATvi
︸ ︷︷ ︸

σivi

+bTvi]
∂c

∂zi

− ∂2c

∂z2
i

= 0, (3.45)

for i = 1, 2. By (3.39), xTσivi = σix
Tvi = σizi, so that (3.45) can be written in terms

of zi only:
∂2c

∂z2
i

− [σizi + vi · b]
∂c

∂zi

= 0, (3.46)

for i = 1, 2.

To solve (3.46), let c̃i ≡ ∂c
∂zi

. Then (3.46) becomes

∂c̃i
∂zi

− [σizi + vi · b]c̃i = 0. (3.47)

(3.47) is a separable ODE, that can be integrated:

∫
∂c̃i
c̃i

=

∫

[σizi + vi · b]dzi ⇒ ln c̃i =
σiz

2
i

2
+ (vi · b)zi + const1, (3.48)
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or
∂c

∂zi

≡ c̃i = K1 exp

{
σiz

2
i

2
+ (vi · b)zi

}

, (3.49)

for some constant K1. Integrating (3.49), the solution

c(zi) = K1

∫ zi

0

exp

{
σiw

2

2
+ (vi · b)w

}

dw +K2, (3.50)

is obtained, for some other constant K2. Finally, substituting the transformation

(3.39) into (3.50), the solution to (3.37) is obtained, namely

cE(x) = K1

∫ vi·x

0

exp

{
σiw

2

2
+ (vi · b)w

}

dw +K2. (3.51)

By definition, the eigenvalues σi of A are roots of the characteristic polynomial

of A, that is, they are solutions to the following quadratic equation

σ2
i − tr(A)

︸ ︷︷ ︸

≡τ

σi + det(A)
︸ ︷︷ ︸

≡∆

= 0, (3.52)

where tr(·) and det(·) denote the trace and determinant of a matrix, respectively. By

the quadratic formula:

σi =
τ ±

√
τ 2 − 4∆

2
. (3.53)

For σi 6= 0, (3.51) can be simplified nicely using the error function erf(·):

∫ vi·x
0

exp
{

σiw
2

2
+ (vi · b)w

}

dw = 1
2

√
2π
−σi

e
− (vi·b)

2σi

[

erf
{√

−2σi
2

(

(vi · x) + vi·b
σi

)}

−erf
{√

−2σi
2

(
vi·b
σi

)}]

,

(3.54)

where

erf(x) ≡ 2√
π

∫ x

0

e−t2dt. (3.55)

The character of the solutions (3.51) depends on the eigenvalues of A. Figure 3.5

illustrates a typical function (3.51) for σi ∈ R; Figure 3.6 illustrates this function for

σi ∈ C with I(σi) 6= 0, where I(z) denotes the imaginary part of a complex number
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z ∈ C. Note that, in this latter case, the function cE(x) (3.54) is complex-valued.

(a) σi < 0 (b) σi > 0

Figure 3.5: Free-space solution (3.51) for σi ∈ R

(a) Real part of (3.51) (b) Imaginary part of (3.51)

Figure 3.6: Free-space solution (3.51) for σi ∈ C

In the case when σi = 0 but vi ·b 6= 0, the free-space solutions (3.51) evaluate to:

cE(x) = K1

∫ vi·x

0

evi·bwdw +K2 =
K1

vi · b
[
e(vi·b)(vi·x) − 1

]
+K2. (3.56)

Remark 3.2.1. Another family of free-space solutions to (3.37) is given in Section

7.3 of the Appendix for the specific case when A is orthogonally diagonalizable, that

is, A is diagonalizable by an orthogonal matrix. This is the case if A is, for example,

symmetric.



Chapter 4

DEM for the 2D

constant-coefficient

advection-diffusion equation

This chapter is devoted specifically to the development of DEM for constant-coefficient

transport problems. The methodology described in this chapter has a natural exten-

sion to variable-coefficient problems, discussed specifically in Chapter 5.

4.1 The enrichment space VE

In Section 3.1, several families of free-space solutions to (1.2) when a ∈ R
2 is spatially

constant were derived. In DEM, these free-space solutions are used to define the

enrichment space VE ⊂ Vh (Section 2.3). In this chapter, only the exponential free-

space solutions derived in Section 3.1.1 (Case 1) will be employed in the design of

the enrichment space VE. In particular, the oscillatory functions derived in Section

3.1.1 (Cases 2 and 3) will be omitted from the enrichment space VE on grounds that,

unless there is a trigonometric source in equation (2.1), the solutions of these BVPs do

not exhibit an oscillatory behavior. Rather, they exhibit however sharp exponential

boundary layers (cf. Section 4.5.1–4.5.3) in which the velocity profile rises or falls

sharply, much like the functions in the first case of Table 3.1. Since the objective here

48
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is to capture exponential layers, the polynomial free-space solutions to (2.1) with

a ∈ R
2 derived in Section 3.1.2 will not be employed in the design of VE either.

To this effect, let

VE ≡
{

cE ∈ L2(Ω̃) : c|EΩe(x, y) =
nE∑

i=1

cie

“

a1+|a| cos θi
2κ

”

(x−xer,i)e

“

a2+|a| sin θi
2κ

”

(y−yer,i),

ci ∈ R, 0 ≤ θi ≤ 2π} .
(4.1)

The constants ci that appear in (4.1) are the unknown degrees of freedom (dofs) to

be solved for in computing the solution by DEM. The integer nE is the number of

enrichment functions (the dimension of the space VE), selected a priori in designing

an enriched element. In (4.1), xe
r = (xe

r,i ye
r,i)

T ∈ R
2 is an arbitrary reference point

assigned to element Ωe for the ith enrichment. This reference point has the practical

purpose of scaling the enrichment functions to prevent them from evaluating to a

very large number on a finite precision arithmetic machine. Further discussion of the

reference point is deferred until Section 4.4.3. The Greek letter φ will be used to

denote the given advection direction, implied by the advection coefficients a1 and a2,

and defined by

a1 = |a| cosφ, a2 = |a| sinφ, (4.2)

(Figure 4.2).

The natural interpretation of the angles θi that appear in (4.1) is that they are

flow directions. Figure 4.1 displays a graphical representation of the argument of the

exponential in (4.1), namely

aφ + aθi ≡
(

a1 + |a| cos θi

a2 + |a| sin θi

)

∈ R
2, (4.3)

where

aT
θi
≡ |a|

(

cos θi, sin θi

)

. (4.4)

In particular, for θi ∈ [0, 2π), the vectors (4.3) can be represented by a circle of

radius |a| centered at (a1, a2) in the Euclidian plane. Each exponential enrichment
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s(θi)

c(θi)

aφ

aθi

aφ + aθi

a1

a2

{
c(θi) = a1 + |a| cos θi

s(θi) = a2 + |a| sin θi

Figure 4.1: Graphical representation of enrichment arguments (4.3) as a circle of
radius |a| centered at a ∈ R

2

function (3.10) specified by an angle θi ∈ [0, 2π) exhibits a boundary layer in the

direction of the vector (4.3) (Figure 3.1). Not only does the parameterization of

the exponential enrichment functions (4.1) with respect to an angle parameter fit in

nicely with the problem at hand, it also facilitates the design and implementation

of DGM/DEM elements of arbitrary orders: to design an element of order nE, one

simply selects nE angles θi ∈ [0, 2π). Each of these angles defines a basis function of

the form (3.10). The set of angles {θi} specifying an enrichment basis is denoted by

Θc ≡
{

set of angles {θi ∈ [0, 2π)}nE

i=1 defining VE
}

. (4.5)

One strategy for constructing a space VE of dimension nE is to select the angles

{θi} ∈ Θc such that the enrichment functions specify “slope” — that is, exhibit a

sharp gradient — in nE different directions (Section 4.3).

Remark 4.1.1. Of particular interest is the relationship between θi and the advection

direction φ implied by the advection coefficients a1 and a2. Setting θi = φ, where φ

(4.2) is the advection direction defined by (4.2), in (3.10), one finds that cE(x;φ)

simplifies to

cE(x;φ) = ea1(x−xer)ea2(y−yer). (4.6)
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Figure 4.2: Flow at an angle φ over Ωe = (xj, xj+1) × (yj, yj+1)

The function (4.6) has the property that

∇cE(x;φ) = acE(x;φ). (4.7)

The gradient of a function points in the direction in which that function changes

most rapidly; therefore (4.7) implies that the enrichment function specified by θi = φ

rises most rapidly precisely in the direction of the advection φ. There is therefore the

motivation to always include θi = φ in the set Θc specifying the enrichment basis of

a DGM or DEM element designed to solve a problem with advection velocities a1 and

a2. This idea is explored further in Section 4.3.

Remark 4.1.2. Note that a constant is a free-space solution of the advection-diffusion

equation (1.2) and

cE(x;φ+ π) = 1. (4.8)

This property will be exploited in designing certain kinds of DGM elements (Section

4.3).
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4.2 The Lagrange multiplier approximation space

Wh

As outlined in Section 2.3.3, the variational form of the problem suggests appropri-

ate Lagrange multiplier approximations are the normal derivatives of the enrichment

functions on the element interfaces. In the case of a spatially-constant coefficient

transport problem, the Lagrange multiplier approximations (2.54) are well defined

given the enrichment space VE (4.1) – in fact they can be computed from (4.1) sim-

ply by taking the normal derivatives of these functions on each element edge. In

the following subsection, an appropriate functional form for the Lagrange multiplier

approximations on unstructured meshes of quadrilateral straight-edged elements (Fig-

ure 4.3) is inferred by computing these normal derivatives analytically per the formula

suggested by (2.54).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Sample unstructured mesh of 100 quadrilateral elements



CHAPTER 4. CONSTANT-COEFFICIENT ADVECTION-DIFFUSION 53

4.2.1 Derivation of the Lagrange multiplier approximations

on an element edge

Let Γij be a straight edge separating two adjacent elements Ωei and Ωej , but viewed

as an edge belonging to Ωei . Let xij
0 = (xij

0 , y
ij
0 ) and xij

1 = (xij
1 , y

ij
1 ) be the coordinates

of this edge, labeled with respect to a right-handed coordinate system so that the

outward normal nij to Ωei points to the right of Ωei (Figure 4.4). Parameterize this

edge with respect to an arc-length coordinate 0 ≤ s ≤ lij, where lij is the length of

this edge. Let αij ∈
[
0, π

2

]
denote the angle Γij makes with the x-axis, defined by

¡
¡
¡
¡
¡
¡
¡
¡

@
@R
ne,e′
s

r

r

s = 0

s = lijΩei

Ωej
Γij

αij
¡
¡
¡
¡
¡
¡

¡¢
Figure 4.4: Straight edge of element Ωei oriented at angle αij

{

∆xij = lij cosαij,

∆yij = lij sinαij,
(4.9)

where

∆xij ≡ xij
1 − xij

0 , ∆yij ≡ yij
1 − yij

0 . (4.10)

Then the unit tangent vector to Γij, tij, is given by

tij =
1

lij

(

∆xij ∆yij
)T

=
(

cosαij sinαij
)T

≡
(

tij1 tij2

)T

, (4.11)

so that

nij =
(

tij2 −tij1
)T

. (4.12)
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Now, Γij can be parameterized with respect to the arc length coordinate s as follows

Γij :

{

x = xij
0 + tij1 s

y = yij
0 + tij2 s

, 0 ≤ s ≤ lij. (4.13)

As outlined in Section 4.1, the first step in defining the space VE of a DGM or

DEM element is to select the set Θc that defines the element’s enrichment basis. Given

the parametrization of Γij (4.13) and the set Θc (4.5), one can begin by computing

the corresponding Lagrange multiplier approximations according to (2.54)

λh(s)|Γij =
nE∑

k=1

λk exp

{
1

2

[
(aφ + aθk) · tij

]
(s− sij

r,k)

}

︸ ︷︷ ︸

≡λh(s;θk)

, 0 ≤ s ≤ lij, (4.14)

where tij is the unit tangent vector to Γij defined in (4.11), sij
r,k is an arbitrary reference

point and the λk are the unknown multiplier dofs. Substituting the expression of tij

(4.11) into the above result and applying some trigonometric identities transforms

(4.14) into

λh(s)|Γij =
nE∑

k=1

λk exp

{ |a|
2

[
cos(φ− αij) + cos(θk − αij)

]
(s− sij

r,k)

}

︸ ︷︷ ︸

≡λh(s;θk)

, 0 ≤ s ≤ lij.

(4.15)

Example 4.2.1. In a uniform mesh aligned with the x- and y-coordinate axes, αij =

0, π for the top/bottom edges of each element and αij = π
2
, 3π

2
for the left/right edges

of each element. For these values, (4.15) reduces to the formulas

λtb =
nE∑

i=1

λtb
i exp

{
|a|
2

(cosφ+ cos θi)(x− xr,i)
}

, xj ≤ x ≤ xj+1,

λlr =
nE∑

i=1

λlr
i exp

{
|a|
2

(sinφ+ sin θi)(y − yr,i)
}

, yj ≤ y ≤ yj+1,

(4.16)

for an element Ωe = (xj, xj+1) × (yj, yj+1) ⊂ R
2. Here, λtb and λlr denote the La-

grange multiplier approximations on the top/bottom and left/right edges in the mesh,
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respectively (Figure 4.2).

4.2.2 Lagrange multiplier selection and truncation

Before presenting a general algorithm for designing a DGM or DEM element of an

arbitrary order (Algorithm 2 in Section 4.3.1), two problems that can be encountered

in element design are illustrated.

Problem 1: Too many Lagrange multipliers

As it turns out, The set Θc (4.5) typically leads to too many Lagrange multiplier

dofs (4.14) in the sense that condition (2.49) fails. For this reason, the space of

approximation of the Lagrange multiplier field is constructed as Wh = ∪e ∪ej<ei Wh
ij

where

Wh
ij =

{

λh ∈ L2(Γij) : λh(s)|Γij =
nλ∑

k=1

λk exp
(

1
2

[

(aφ + aθλk
) · tij

] (
s− sij

r,k

))

,

0 ≤ s ≤ lij, 0 ≤ θλ
k < 2π, λk ∈ R

}
.

(4.17)

Here, {θλ
k}nλ

k=1 = Θλ is another set of angles that is defined a priori and independently

from Θc, and nλ is the number of Lagrange multiplier dofs per edge. This is discussed

in more detail in Section 4.3, and illustrated in Figure 4.5 (b).

Problem 2: Lagrange multiplier redundancy (when nλ > 1)

It is often the case that a “näıve” selection of the set Θλ to define Wh causes a

Lagrange multiplier redundancy on some edge in the mesh. For example, suppose

Θλ = {θλ
1 = 0, θλ

2 = π} and αij = π
2

for a particular edge Γij. Suppose the flow is

being advected from left to right, so φ = 0. Then, from (4.15),

λh|Γij(s; θλ
1 = 0) = λh|Γij(s; θλ

2 = π) = 1 (4.18)

Both angles θλ
1 = 0 and θλ

2 = π define the same, constant Lagrange multiplier; that
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is, they define Lagrange multipliers that are redundant. Including the Lagrange mul-

tipliers corresponding to these two angles will result in a singular global interface

problem. This situation must therefore be avoided.

The following lemma defines a set of necessary conditions for the set Θλ to gen-

erate redundant Lagrange multiplier approximations. When nλ > 2, one must check

that each pair of angles in the proposed set Θλ does not verify any of these conditions

before finalizing the design of a DGM or DEM element.

Lemma 4.2.2. Two Lagrange multipliers λh(s; θλ
1 ) and λh(s; θλ

2 ) given by (4.14)
(
or

equivalently (4.15)
)

on a straight edge Γij parameterized by (4.13) are redundant (that

is, λh(s; θλ
1 ) = Cλh(s; θλ

2 ) for some real constant C) if

θλ
1 − θλ

2

2
= nπ, (4.19)

or
θλ
1 + θλ

2

2
= αij + nπ, (4.20)

for any n ∈ Z, where αij is the angle at which Γij is oriented (Figure 4.4).

Proof. From (4.15), λh(s; θλ
1 ) = λh(s; θλ

2 ) if

cos(θλ
1 − αij) = cos(θλ

2 − αij). (4.21)

Clearly (4.21) holds if θλ
1 = θλ

2 + 2nπ for any n ∈ Z, which proves (4.19). Since cos(·)
is even, (4.21) is equivalent to

cos(θλ
1 − αij) = cos(αij − θλ

2 ), (4.22)

which holds if θλ
1 − αij = αij − θλ

2 + 2nπ or
θλ1 +θλ2

2
= αij + nπ for n ∈ Z.
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4.3 DGM and DEM element design

4.3.1 General and mesh independent element design proce-

dure

A general procedure for designing a DGM or DEM element with an enrichment space

containing nE exponential basis functions (4.1) is summarized in Algorithm 2. Con-

dition (4.20) of Lemma 4.1 motivates choosing Θλ as a set of angles that are clustered

around αij — that is,

Θλ = αij + {βλ
k}nλ

k=1, {βλ
k}nλ

k=1 ∈ [0, 2π), (4.23)

in which case (4.15) simplifies to

λh(s)|Γij =
nλ∑

k=1

λk exp

( |a|
2

[
cos(φ− αij) + cos βλ

k

]
(s− sr,k)

)

, (4.24)

for 0 ≤ s ≤ lij. For the choice of angles (4.23), the necessary condition for redundancy

(4.20) becomes
θλ

k + θλ
l

2
= αij + nπ ⇔ βλ

k + βλ
l

2
= nπ, (4.25)

for any two distinct k, l ∈ {1, 2, ..., nλ}. Since condition (4.25) is independent of αij,

condition (4.20) is in this case (quadrilateral) mesh independent.

Remark 4.3.1. A consequence of the element design approach outlined in Algorithm

1 is that, in general,

Θλ 6⊂ Θc. (4.26)

Selecting Θλ independently of Θc is actually rather intuitive: since there are almost

always more normal derivatives of the enrichment functions in VE than allowed by

(2.49) and one does not know a priori which of these Lagrange multipliers are more

important and should be kept in Θλ, and which are less important and can be omitted,

a reasonable compromise is to define Θλ as some average of the angles in Θc. Indeed,

in practice, the angles {βλ
k}nλ

k=1 that define the set Θλ (4.23) are selected uniformly
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Algorithm 2 DGM/DEM element design

Fix nE ∈ N, the desired number of angles defining the enrichment space VE (4.1).
Select a set Θc = {θi}nE

i=1 of nE distinct angles between [0, 2π) which:
if designing a pure DGM element then

Includes θi = φ+ π in Θc

else
Omits θi = φ+ π from Θc.

end if
Let nλ = bnE

4
c.

Choose a set of nλ distinct angles {βλ
k}nλ

k=1 between [0, π).
for each edge Γij ∈ Γint having slope αij do

Let Θλ = αij + {βλ
k}nλ

k=1 be the set of angles defining the Lagrange multiplier
approximations (4.17) on Γij.

end for

between the angles [0, π) so as to “cover” the R
2 space in some way (Table 4.2).

4.3.2 Some 2D DGM and DEM elements for constant-coeffici-

ent advection-diffusion

Here, several low and higher-order quadrilateral DGM and DEM elements are pro-

posed for the finite element solution of 2D constant-coefficient advection-diffusion

problems on unstructured meshes. The notation used for describing these elements

is summarized in Table 4.1. The letter ‘Q’ stands for ‘quadrilateral’. As before, nE

Table 4.1: DGM and DEM Element Nomenclature

Element Pe ≤ 103 Pe > 103

DGM Q-nE-nλ Q-nE-nλ

DEM Q-nE-nλ+ Q-nE-nλ+

denotes the number of enrichment functions (number of angles in the set Θc) and nλ

the number of Lagrange multiplier dofs per edge (number of angles in the set Θλ).

Two cases are distinguished: Pe ≤ 103 (small to moderate Péclet number regime),
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and Pe > 103 (high Péclet number regime). In the latter case, the DGM and DEM

elements are designed slightly differently to address some numerical issues and dis-

tinguished by the presence of a horizontal bar over their names
(
·- · -·

)
. The “+”

superscript designates a true DEM element (ch = cP + cE) and distinguishes it from

a pure DGM element (ch = cE).

Since the approximation space VE is constructed independently from VP , the

polynomial component of a DEM element can be set to that of any higher-order

standard Galerkin element Qn (see Section 7.1.1 of the Appendix), independently

from the value of nE. From a practical perspective, it is however unnecessary to do so

because for most advection-diffusion problems, the benefit of including a higher-order

polynomial approximation in a DEM element is already provided by the presence

of the enrichment field in this element. For this reason and in order to maximize

computational efficiency, all DEM elements described in this section share the same

low-order polynomial component which is identical to that of the standard bilinear

element Q1, that is,

Q-nE-nλ+ ≡ [Q-nE-nλ] ∪ [Q1], Q-nE-nλ+ ≡ [Q-nE-nλ] ∪ [Q1]. (4.27)

4.3.3 Element design for Pe ≤ 103

Table 4.2 describes four DGM elements and four DEM elements designed according to

the general procedure outlined in Section 4.3.1. For all these elements, the enrichment

bases are defined by

Θc = {θm}nE

m=1 ≡ φ+ {βm}nE

m=1, βm =
2(m− 1)π

nE
. (4.28)

where φ is the advection direction given in the problem (4.2).

Remark 4.3.2. For all DEM elements in Table 4.2, nE is chosen as an odd integer.

This ensures that θi = φ+π, n ∈ Z, is not included in Θc, and therefore the constant

approximation is not included in this case in the enrichment field (see Remark 4.1.2).

Note also that all values of nλ are specified according to (2.50), all sets Θλ defining
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Table 4.2: Higher-order DGM and DEM elements

Name nE Θc nλ Θλ

DGM

Q-4-1 4 φ+
{

mπ
2

: m = 0, ..., 3
}

1 φ
Q-8-2 8 φ+

{
mπ
4

: m = 0, ..., 7
}

2 αij + {0, π
2
}

Q-12-3 12 φ+
{

mπ
6

: m = 0, ..., 11
}

3 αij + {π
4
, π

2
, 3π

4
}

Q-16-4 16 φ+
{

mπ
8

: m = 0, ..., 15
}

4 αij + {0, π
4
, π

2
, 3π

4
}

DEM

Q-5-1+ 5 φ+
{

2mπ
5

: m = 0, ..., 4
}

1 φ+ π
Q-9-2+ 9 φ+

{
2mπ

9
: m = 0, ..., 8

}
2 αij + {0, π

2
}

Q-13-3+ 13 φ+
{

2mπ
13

: m = 0, ..., 12
}

3 αij + {π
4
, π

2
, 3π

4
}

Q-17-4+ 17 φ+
{

2mπ
17

: m = 0, ..., 16
}

4 αij + {0, π
4
, π

2
, 3π

4
}

the Lagrange multiplier approximations have the form (4.23), and all sets {βλ
k}nλ

k=1

are such that condition (4.25) is avoided by all pairs of angles in these sets.

Remark 4.3.3. Although the approximation spaces of the true DEM elements contain

one more enrichment function than their pure DGM counterparts, including these ad-

ditional enrichment functions does not increase the cost of the true DEM elements.

This is because the computational complexity of these elements (Table 2.2) is not

determined by the number of enrichment functions nE but rather the number of La-

grange multiplier approximation dofs, as the enrichment dofs are eliminated locally at

the element level by static condensation (Section 2.4.3).

Example 4.3.4. As an example, the DGM element Q-8-2 described in Table 4.2 is

graphically depicted in Figure 4.5.

4.3.4 Element design for Pe > 103

A difficulty arises in the implementation of the elements described in Section 4.3.3

when the Péclet number is very large (in practice, Pe > 103). Such a Péclet number

can be encountered in high Reynolds number flows. In this case, it is found that

even with the use of a reference point xe
r,i inside each element Ωe (see Section 4.4.3),

the local and global matrices arising from the DGM or DEM discretizations become
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Figure 4.5: Illustration of the sets Θc and Θλ that define the Q-8-2 element

ill-conditioned. To address this issue, advection-limited variants of the DGM and

DEM elements described so far are designed to operate in the high Péclet number

regime, defined here as Pe > 103. In these variant elements, the advection coefficients

appearing in the arguments of the exponential functions of the enrichment basis are

limited to an experimentally-determined “safe” value of 103 so that the enrichment

functions of these elements are made up of the functions

cE(x; θi)|Ωe =
nE∑

i=1

exp

{
1

2

(aφ

κ
+ aθi

)

· (x − xe
r,i)

}

, (4.29)

with

aT
θi
≡ min

{

103,
|a|
κ

}(

cos θi sin θi

)

, (4.30)

where the bar notation is used to designate advection limitation. The resulting DGM

and DEM elements are denoted by Q-nE-nλ (DGM) and Q-nE-nλ+ (DEM).

Remark 4.3.5. For Pe > 103, functions of the form (4.29) are not free-space solu-

tions of the homogeneous advection-diffusion equation for the original Péclet number.
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Instead, they are free-space solutions of the homogeneous advection-diffusion equa-

tions for different and lower Péclet numbers. Nevertheless, these functions are more

pertinent to the problem of interest than mere polynomials.

4.4 Implementation and computational properties

4.4.1 Computational complexity

The computational complexity of the DGM and DEM elements developed in Section

4.3.2 can be inferred from Table 2.2 for the case of a uniform mesh with nel = n× n

quadrilateral elements, assuming that static condensation of the enrichment dofs is

implemented at the element-level (see Section 2.4.2). For more discussion of the com-

putational complexity and implementation of DEM, the reader is referred to Section

2.4.3. The reader can observe that the elements in the following pairs of DGM and

Galerkin elements have comparable computational complexity: (Q-4-1, Q1), (Q-8-

2, Q2), (Q-12-3, Q3) and (Q-16-4, Q4). The true DEM elements are slightly more

expensive: each constructed DEM element Q-nE-nλ+ has the same computational

complexity as the standard Galerkin element Qnλ+1. In Section 4.5, it is shown

numerically that any two elements of the following triplets exhibit comparable con-

vergence rates: (Q-4-1, Q-5-1+, Q1), (Q-8-2, Q-9-2+, Q2), (Q-12-3, Q-13-3+, Q3) and

(Q-16-4, Q-17-4+, Q4). For this reason, all pairs of elements within these triples are

referred to here as comparables and the performance of a proposed DGM or DEM

element is assessed (Section 4.5) by comparing it to that of its Galerkin comparable.

4.4.2 Analytical evaluation of element-level arrays

As κ → 0 (Pe → ∞), the numerical integration by a Gaussian quadrature of the

integrals (2.22)–(2.25) becomes highly inaccurate because of the large magnitudes of

the arguments of the exponential enrichment functions (4.1). However, these integrals

can be evaluated analytically with ease on any mesh with straight-edged elements

aligned with the coordinate axes. For example, on a uniform mesh of square elements

Ωe ≡ (xj, xj+1) × (yj, yj+1), the entries of the kEE matrices, for 1 ≤ l,m ≤ nE, take
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the form

kEE
lm ≡

∫

Ωe
[(a · ∇cEl )cEm + κ∇cEl · ∇cEm]dΩe

=
(

|a|
2κ

(cosφ+ cos θl) + |a|
2κ

(sinφ+ sin θl) + 1
4κ

[(aφ + aθl) · (aφ + aθm)]
)

Ilm,

(4.31)

where

Ilm ≡
[∫ xj+1

xj
e

|ae|
2κ

(2 cos φ+cos θl+cos θem)(x−xer,l−xer,m)dx
]

×
[∫ yj+1

yj
e

|a|
2κ

(2 sin φ+sin θl+sin θ)(y−yer,l−yer,m)dy
]

.
(4.32)

The integral (4.32) can be evaluated analytically.

Another convenient property of the functions (4.1), one that was mentioned earlier

in Section 2.4.1, is that they satisfy LcE = 0. As a result, integration by parts of

(2.22) gives

a(vE, cE) =

∫

Ω̃

(κ∇vE · ∇cE + a · ∇cEvE) dΩ = κ

∫

Γ̃

∇cE · nvEdΓ. (4.33)

Thus, for pure DGM elements and homogeneous problems, no volume integral needs

be computed at all, which further simplifies the implementation of a DGM element.

4.4.3 Selection of reference points

As mentioned earlier, the enrichment functions (4.1) are scaled by the effect of an

arbitrary reference point xe
r,i within each element Ωe to avoid evaluating a very

large floating point number on a finite precision arithmetic processor. Numerical

experiments demonstrate that overflow is inevitable if the same reference point is

used for each of the enrichment functions. A procedure for setting the reference

points that produces good performance for the DGM and DEM elements proposed

herein is summarized in Algorithm 3.

In Algorithm 3, aφ and aθi are defined in (4.4), aφ(j)
(
aθ(j)

)
, j = 1, 2, is the jth

component of aφ (aθ), and {(xe
k, y

e
k)}4

k=1 are the coordinates of the nodes of element

Ωe. An analogous algorithm is used to determine the Lagrange multiplier reference

points sij
r,k which are set either to 0 or to lij depending on the sign of the argument
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of the exponential in (4.17) (Figure 4.4).

Algorithm 3 Selection of exponential enrichment function reference point

for j = 1 to nel do
for i = 1 to nE do

if aφ(1) + aθi(1) ≥ 0 then
xe

r,i = max{xe
k}4

k=1

else
xe

r,i = min{xe
k}4

k=1

end if
if aφ(2) + aθi(2) ≥ 0 then
ye

r,i = max{ye
k}4

k=1

else
ye

r,i = min{ye
k}4

k=1

end if
end for

end for

4.5 Numerical results

In this section, the DGM and DEM advection-diffusion elements described in Sec-

tion 4.3.2 are tested on four benchmark problems:

(i) A homogeneous boundary layer problem on the unit square whose exact solution

is spanned by the DGM basis (4.1) [Section 4.5.1].

(ii) A homogeneous boundary layer problem on the unit square whose exact solution

is not spanned by the DGM basis (4.1) [Section 4.5.2].

(iii) A two-scale inhomogeneous BVP on the unit square [Section 4.5.3].

(iv) A “double ramp” problem on an L-shaped domain [Section 4.5.4].

For all four problems, the diffusivity κ = 1, so that, since the length of the domain

is equal to one, the global Péclet number on Ω is simply Pe = |a|. In each case, the

performance of the DGM and/or DEM elements of Section 4.3.2 is contrasted with



CHAPTER 4. CONSTANT-COEFFICIENT ADVECTION-DIFFUSION 65

that of standard Galerkin elements. For the first benchmark problem (Section 4.5.1),

it is also compared to that of several stabilized finite elements (Section 7.1.2 of the

Appendix) developed in [16], as these elements were also tested by their developers

on this problem. It is emphasized that all elements denoted by Qn, n = 1, 2, 3, 4, are

non-stabilized isoparametric Galerkin elements (Section 7.1.1 of the Appendix). All

reported errors are relative errors measured in the L2(Ω) broken norm . For a DGM

element with nE enrichment functions, the absolute counterpart of this error E is

computed as follows

E2 =
nel∑

e=1

∣
∣
∣

∣
∣
∣

nE∑

i=1

dic
E(x; θi)|Ωe − cref(x)|Ωe

∣
∣
∣

∣
∣
∣

2

L2(Ωe)

=
nel∑

e=1







∫

Ωe

(
nE∑

i=1

dic
E(x; θi) − cref(x)

)2

dΩ






,

(4.34)

where cref(x) is a reference (or the exact) solution, cE(x; θi) are the enrichment func-

tions given by (4.1), and di are the computed enrichment dofs. The errors were

measured either with respect to the exact solution
(
when available, as in the case

of problems (i) – (iii)
)
, or a reference solution computed using a sufficiently refined

mesh
(
problem (iv)

)
. For uniform meshes, all comparisons were performed between

elements of similar computational complexity a priori, either for a specified level of

accuracy or for a fixed total number of degrees of freedom. It turns out that all com-

pared elements have also a similar convergence rate a posteriori. All unstructured

meshes were generated by perturbing the nodes of an n × n uniform mesh (see e.g.,

Figure 4.3). On the structured meshes, all integrals (2.22)–(2.25) and therefore all

matrices and right hand sides (2.56) were computed exactly (Section 4.4.2).
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4.5.1 Homogeneous boundary layer problem with a flow aligned

with the advection direction

Let Ω = (0, 1) × (0, 1). Consider the BVP (2.1) with f = 0 and Dirichlet boundary

conditions on Γ designed so that the exact solution of this problem (Figure 4.6 (c)) is

cex(x;φ) =
eaφ·(x−1) − 1

e−aφ·1 − 1
, (4.35)

where 1T ≡
(

1, 1
)

and aφ is defined in (4.4). For a specified advection direction

φ and Péclet number Pe, the solution of this BVP exhibits a boundary layer in the

direction φ whose gradient is a function of Pe. The higher is Pe, the steeper is the

solution.

Among all elements developed in Section 4.3.2, only the pure DGM elements

Q-4-1, Q-8-2, Q-12-3 and Q-16-4 are considered for the solution of this benchmark

problem, because it is a homogeneous one, per the rule of thumb described in Section

2.3. The performance results obtained for these DGM elements are compared to

those of several standard Galerkin and stabilized finite elements when the size of the

problem is kept fixed at approximately 400 dofs. Before commenting on these results,

it is noted that:

• For this BVP, cex ∈ VE for all DGM elements considered herein and all advection

directions φ. However, each of these DGM elements should be expected to

recover the exact solution (4.35) (to machine precision), only if ∇cex · n ∈ Wh

of this element.

• For a uniform discretization, αij (Figure 4.4) takes the values of 0, π
2
, π, or 3π

2

for all edges Γij ∈ Γint of the mesh. From Table 4.2, it follows that in this case,

for each considered DGM element, ∇cex · n ∈ Wh for the advection directions

given in Table 4.3.

• It follows that for φ = 0, all four DGM elements considered herein should

capture the solution of the BVP defined above to machine precision. For φ = π
6
,

only the Q-4-1 element should do so. For φ = π
4
, all four DGM elements
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considered herein except Q-8-2 should capture the exact solution to machine

precision.

Table 4.3: Advection directions φ/π ∈ {0, 1/6, 1/4} for which ∇cex · n ∈ Wh for
uniform discretizations of Ω for the homogeneous boundary layer problem of Section
4.5.1

∇cex · n ∈ Wh?
``````````````̀DGM element

φ/π 0 1/6 1/4

Q-4-1 X X X

Q-8-2 X

Q-12-3 X X

Q-16-4 X X

Table 4.4 reports for Pe = 102 and Pe = 103 and three different advection direc-

tions the relative errors associated with the solutions computed on uniform meshes

using the standard Galerkin element Q1, three different stabilized versions of this

bilinear element developed in [16] under the labels STR1, EST2 and FFH3, and the

lower-order DGM element Q-4-1, which has a comparable complexity. In all cases,

the number of dofs is kept fixed at about 400. The reader can observe that, consis-

tently with the remarks formulated above, the DGM element Q-4-1 reproduces the

exact solution to almost machine precision for all three advection directions φ = 0,

φ = π
6
, and φ = π

4
. As such, it outperforms in these cases — by a large margin — the

standard Galerkin element Q1 and all of its considered stabilized counterparts.

Similarly, Table 4.5 reports the relative errors associated with the numerical solu-

tions provided by the elements Q1, the STR, EST, FFH elements, and the advection-

limited DGM element Q-4-1, for the case of the very large Péclet number of 106. The

solutions provided by the considered stabilized finite elements are shown to be on

average about four orders of magnitude more accurate for φ = 0 and three orders

1A stabilized finite element with a STReamline stabilization parameter [16].
2A stabilized finite element with an ESTimated streamline stabilization parameter [16].
3A stabilized finite element with the Franca-Frey-Hughes parameter [16, 20].
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of magnitude more accurate for φ 6= 0 than that generated by the standard element

Q1. Since by construction, the basis functions of advection-limited DGM elements

are not free-space solutions of the homogeneous advection-diffusion equation for the

original Péclet number, the DGM element Q-4-1 cannot capture the exact solution to

almost machine precision. However, at least for this benchmark problem, this element

is found to deliver a numerical solution that is about one order of magnitude more

accurate than that delivered by any of the considered stabilized finite elements.

Table 4.4: Homogeneous boundary layer problem of Section 4.5.1 with Pe ≤ 103: rel-
ative errors in the L2(Ω) broken norm for uniform discretizations with approximately
400 dofs (non-stabilized and stabilized Galerkin Q1 elements vs. DGM Q-4-1 element)

Pe φ/π Q1 STR EST FFH Q-4-1

102

0 8.97 × 10−2 7.62 × 10−2 7.62 × 10−2 8.59 × 10−2 3.06 × 10−15

1/6 1.31 × 10−2 1.14 × 10−2 1.15 × 10−2 1.25 × 10−2 1.18 × 10−16

1/4 1.31 × 10−2 1.14 × 10−2 1.15 × 10−2 1.26 × 10−2 2.66 × 10−15

103

0 5.77 × 10−1 1.28 × 10−1 1.28 × 10−1 1.29 × 10−2 3.43 × 10−14

1/6 2.53 × 10−2 1.67 × 10−2 1.67 × 10−2 1.75 × 10−2 1.24 × 10−15

1/4 2.62 × 10−2 1.67 × 10−2 1.67 × 10−2 1.77 × 10−2 3.19 × 10−14

Table 4.5: Homogeneous boundary layer problem of Section 4.5.1 with Pe = 106: rel-
ative errors in the L2(Ω) broken norm for uniform discretizations with approximately
400 dofs (non-stabilized and stabilized Galerkin Q1 elements vs. advection-limited
DGM Q-4-1 element)

Pe φ/π Q1 STR EST FFH Q-4-1

106

0 8.44 × 102 1.29 × 10−1 1.29 × 10−1 1.29 × 10−1 2.24 × 10−2

1/6 9.75 1.67 × 10−2 1.67 × 10−2 1.75 × 10−2 1.11 × 10−3

1/4 9.97 1.67 × 10−2 1.67 × 10−2 1.67 × 10−2 1.29 × 10−3

Table 4.6 reports for Pe = 102 and Pe = 103 and the same three different advec-

tion directions as before the relative errors associated with the solutions computed

on uniform meshes using the standard Galerkin elements Q2, Q3 and Q4, and the
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higher-order DGM elements Q-8-2, Q-12-3 and Q-16-4. In all cases, the number of

dofs is kept fixed at 400. For φ = 0, the DGM element Q-8-2 performs as expected

and captures the exact solution of the BVP considered herein to almost machine pre-

cision. In the other two cases, this element whose computational complexity is similar

to that of the standard Galerkin element Q2 produces numerical solutions that are

one order of magnitude more accurate than those delivered by the Q2 element when

Pe = 102, and one to four orders of magnitude more accurate when Pe = 103. Sim-

ilarly, the DGM element Q-12-3 captures as expected the exact solution to almost

machine precision for φ = 0 and φ = π
4
. For φ = π

6
, this element whose computational

complexity is comparable to that of element Q3 produces a numerical solution that is

two orders of magnitude more accurate than that delivered by the element Q3 when

Pe = 102, and almost four orders of magnitude more accurate when Pe = 103. Sim-

ilar conclusions can be drawn from the comparison of the performance of the DGM

element Q-16-4 with the standard Galerkin element Q4 for the solution of this BVP

problem on structured meshes using 400 dofs.

On unstructured meshes, a DGM element whose enrichment field happens to

include the exact solution of the problem of interest cannot be expected to capture

that exact solution to machine precision at low mesh resolution because even in this

case, ∇cex · n /∈ Wh in general. However, the performance results reported in Table

4.7 show that in this case, the DGM methodology outperforms the standard Galerkin

methodology by a large margin. More specifically, for the solution on unstructured

meshes using a fixed number of 400 dofs of the BVP considered herein with Pe = 102

and Pe = 103, the DGM element Q-8-2 is found to deliver numerical results that are

one to three orders of magnitude more accurate than those delivered by the element

Q2. The relative errors associated with the solutions produced by the Q-12-3 element

are shown to be two to five orders of magnitude smaller than those associated with

the numerical solutions computed with the element Q3, and those associated with

the solutions computed using the element Q-16-4 are two to almost six orders of

magnitude smaller than the relative errors associated with the numerical solutions

computed with the element Q4. The results summarized in Tables 4.6 and 4.7 suggest

also that DEM can be used with an h as well as a p mesh refinement computational
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Table 4.6: Homogeneous boundary layer problem of Section 4.5.1 with Pe ≤ 103: rel-
ative errors in the L2(Ω) broken norm for uniform discretizations with approximately
400 dofs (non-stabilized Galerkin vs. DGM elements)

Pe φ/π Q2 Q-8-2 Q3 Q-12-3

102

0 5.77 × 10−2 4.77 × 10−15 4.06 × 10−2 8.03 × 10−14

1/6 6.52 × 10−3 2.40 × 10−4 3.95 × 10−3 6.61 × 10−5

1/4 6.51 × 10−3 2.67 × 10−4 3.83 × 10−3 1.22 × 10−14

103

0 4.33 × 10−1 2.22 × 10−10 3.68 × 10−1 5.78 × 10−13

1/6 1.49 × 10−2 8.38 × 10−4 1.21 × 10−2 5.50 × 10−6

1/4 1.53 × 10−2 5.62 × 10−6 1.24 × 10−2 4.36 × 10−14

Pe φ/π Q4 Q-16-4

102

0 2.39 × 10−2 9.22 × 10−13

1/6 2.02 × 10−3 1.03 × 10−5

1/4 1.87 × 10−3 4.56 × 10−13

103

0 2.44 × 10−1 9.75 × 10−10

1/6 9.47 × 10−3 3.31 × 10−6

1/4 9.81 × 10−3 1.27 × 10−12

strategy: not only is a more accurate solution obtained by reducing the mesh size h,

but also by increasing the number of enrichment functions nE. For the case of the

very high Péclet number of 106, Table 4.8 shows that all of the standard Galerkin

elements Q2, Q3 and Q4 fail to deliver acceptable solutions, particularly for φ = 0. On

the other hand, the proposed higher-order advection-limited DGM elements deliver

solutions with relative errors ranging between 10−4 and 10−2.

Finally, Figure 4.6 compares graphically the solutions computed with the Q-12-3

and Q3 elements when the advection direction is set to φ = 0 and the Péclet number

to Pe = 103. The reader can observe that the DGM solution does not exhibit the

spurious oscillations that pollute the Galerkin solution.
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Table 4.7: Homogeneous boundary layer problem of Section 4.5.1 with Pe ≤ 103:
relative errors in the L2(Ω) broken norm for unstructured discretizations with ap-
proximately 400 dofs (non-stabilized Galerkin vs. DGM elements)

Pe φ/π Q2 Q-8-2 Q3 Q-12-3

102

0 5.66 × 10−2 9.11 × 10−5 3.90 × 10−2 1.35 × 10−5

1/6 6.45 × 10−3 2.30 × 10−4 3.90 × 10−3 6.32 × 10−5

1/4 6.44 × 10−3 1.78 × 10−4 3.79 × 10−3 2.47 × 10−6

103

0 4.32 × 10−1 1.69 × 10−4 3.64 × 10−1 2.58 × 10−6

1/6 1.49 × 10−2 3.71 × 10−4 1.21 × 10−2 5.51 × 10−5

1/4 1.49 × 10−2 9.62 × 10−5 1.23 × 10−2 3.21 × 10−6

Pe φ/π Q4 Q-16-4

102

0 2.36 × 10−2 2.23 × 10−6

1/6 2.05 × 10−3 1.04 × 10−5

1/4 1.89 × 10−3 2.42 × 10−8

103

0 2.43 × 10−1 7.84 × 10−7

1/6 9.48 × 10−3 3.24 × 10−6

1/4 9.83 × 10−3 3.22 × 10−7

Table 4.8: Homogeneous boundary layer problem of Section 4.5.1 with Pe = 106:
relative errors in the L2(Ω) broken norm for unstructured discretizations with ap-
proximately 400 dofs (non-stabilized Galerkin vs. advection-limited DGM elements)

Pe φ/π Q2 Q-8-2 Q3 Q-12-3

106

0 7.07 × 102 2.23 × 10−2 6.64 × 102 2.23 × 10−2

1/6 3.20 8.47 × 10−4 5.15 7.58 × 10−4

1/4 5.23 7.07 × 10−4 7.47 7.06 × 10−4

Pe φ/π Q4 Q-16-4

106

0 5.14 × 102 2.22 × 10−2

1/6 3.45 7.57 × 10−4

1/4 6.89 7.05 × 10−4

4.5.2 Homogeneous boundary layer problem with a flow not

aligned with the advection direction

Here, attention is focused on the solution of a homogeneous boundary layer problem

whose solution exhibits a boundary layer in a flow direction that is not aligned with
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Figure 4.6: Plots of approximated and exact solutions of the homogeneous boundary
layer problem of Section 4.5.1 with φ = 0, 1,600 dofs and Pe = 103

the advection direction. To this effect, the BVP (2.1) is considered with Dirichlet

boundary conditions designed so that the exact solution is

cex(x;φ, ψ) =
e

1
2
(aφ+aψ)·(x−1) − 1

e−
1
2
(aφ+aψ)·1 − 1

, (4.36)

where 1T ≡
(

1, 1
)

, φ ∈ [0, 2π) is the advection-direction and ψ ∈ [0, 2π) is an

arbitrary flow direction. The function (4.36) is plotted in Figure 4.7 (c) for Pe = 103,

φ = π
7

and ψ = 0. In general, solutions of the form given in (4.36) are not in the

span of the enrichment space VE described in (4.1), except for certain values of φ

and ψ. Here, the advection direction is fixed to φ = π/7 and the direction ψ is

varied by angles of π/4 so that the exact solution (4.36) is not contained in the space

of approximation of any of the DGM elements considered herein. The domain is

discretized by unstructured meshes. In all cases, the number of dofs is kept fixed at

1,600.

Table 4.9 reports for Pe = 102 and Pe = 103 the relative errors associated with

the solutions computed on unstructured meshes using the standard Galerkin elements

Q1, Q2, Q3 and Q4, and the DGM elements Q-4-1, Q-8-2, Q-12-3 and Q-16-4. In

all cases, the DGM elements are reported to outperform their standard Galerkin

counterparts (from the computational complexity viewpoint) by a very large margin.
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The performance results reported in Table 4.10 for Pe = 106 show that the advection-

limited DGM elements outperform their standard Galerkin counterparts by even a

larger margin of three orders of magnitude in accuracy. The convergence of the

elements tested is depicted graphically in Figure 4.8. The Q3 and Q-12-3 solutions

are plotted in Figure 4.7 (a) and (b), respectively. The reader can observe that the

DGM solution is oscillation free, in contrast with the Galerkin solution.

Table 4.9: Homogeneous boundary layer problem of Section 4.5.2 with φ = π/7 and
Pe ≤ 103: relative errors in the L2(Ω) broken norm for unstructured discretizations
with approximately 1,600 dofs (non-stabilized Galerkin vs. DGM elements)

Pe ψ/π Q1 Q-4-1 Q2 Q-8-2

102

0 8.18 × 10−3 1.18 × 10−3 2.32 × 10−3 5.79 × 10−5

1/4 5.42 × 10−3 1.31 × 10−3 1.40 × 10−3 8.10 × 10−5

1/2 4.92 × 10−3 3.07 × 10−3 1.18 × 10−3 4.18 × 10−5

103

0 3.29 × 10−2 7.65 × 10−3 5.92 × 10−3 1.79 × 10−3

1/4 3.31 × 10−2 8.62 × 10−4 6.06 × 10−3 2.54 × 10−4

1/2 3.25 × 10−2 9.26 × 10−4 5.97 × 10−3 2.12 × 10−4

Pe ψ/π Q3 Q-12-3 Q4 Q-16-4

102

0 9.55 × 10−4 4.26 × 10−6 3.79 × 10−4 4.94 × 10−7

1/4 4.93 × 10−4 9.53 × 10−7 1.64 × 10−4 1.30 × 10−8

1/2 3.77 × 10−4 1.01 × 10−5 1.19 × 10−4 2.24 × 10−8

103

0 4.34 × 10−3 1.10 × 10−4 3.23 × 10−3 2.30 × 10−5

1/4 4.46 × 10−3 1.23 × 10−5 3.29 × 10−3 8.82 × 10−7

1/2 4.36 × 10−3 1.11 × 10−5 3.18 × 10−3 1.59 × 10−6

Table 4.11 reports for the BVP considered in this section the convergence rates

measured on unstructured meshes for the standard Galerkin and DGM elements at

Pe = 102. The DGM elements Q-4-1, Q-8-2, Q-12-3 and Q-16-4 deliver roughly

quadratic, cubic, quartic, and quintic convergence rates, respectively. Hence from this

viewpoint too, these elements are “comparable” to the standard Galerkin elements

Q1, Q2, Q3, and Q4, respectively. The performance results reported in Table 4.11

also show that to achieve a relative error of 0.1% for Pe = 103, the DGM elements

Q-4-1, Q-8-2, Q-12-3 and Q-16-4 require 4.4, 4.5, 14.7, and 15.1 times fewer dofs than
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Table 4.10: Homogeneous boundary layer problem of Section 4.5.2 with φ = π/7 and
Pe = 106: relative errors in the L2(Ω) broken norm for unstructured discretizations
with approximately 1,600 dofs (non-stabilized Galerkin vs. advection-limited DGM
elements)

Pe ψ/π Q1 Q-4-1 Q2 Q-8-2

106

0 8.67 × 10−1 7.65 × 10−2 2.87 × 10−1 2.07 × 10−3

1/4 8.67 × 10−1 5.67 × 10−2 2.87 × 10−1 7.87 × 10−4

1/2 8.67 × 10−1 6.05 × 10−2 2.87 × 10−1 9.01 × 10−4

Pe ψ/π Q3 Q-12-3 Q4 Q-16-4

106

0 1.85 × 10−1 8.56 × 10−4 9.84 × 10−2 6.88 × 10−4

1/4 1.85 × 10−1 5.68 × 10−4 9.84 × 10−2 4.61 × 10−4

1/2 1.85 × 10−1 6.77 × 10−4 9.84 × 10−2 5.50 × 10−4

the standard Galerkin elements Q1, Q2, Q3, and Q4, respectively. This demonstrates

further the computational superiority of the DGM methodology.
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Figure 4.7: Plots of approximated and exact solutions of the homogeneous boundary
layer problem of Section 4.5.2 with φ = π/7, ψ = 0, 1,600 dofs and Pe = 103

4.5.3 Two-scale inhomogeneous problem

To highlight the role of the polynomial field cP in DEM, a non-homogeneous variant

of the boundary layer problem defined in Section 4.5.2 is considered here. More
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Figure 4.8: Convergence rates on unstructured meshes for the homogeneous boundary
layer problem of Section 4.5.2 with φ = π/7, ψ = 0 and Pe = 102

Table 4.11: Convergence rates on unstructured meshes for the homogeneous boundary
layer problem of Section 4.5.2 with φ = π/7, and ψ = 0

Element
Convergence rate Required # dofs to achieve

(Pe = 102) a relative error of 10−3 (Pe = 103)

Q1 1.90 63,266
Q-4-1 1.99 14,322
Q2 2.38 24,300
Q-8-2 3.27 5,400
Q3 3.48 12,500

Q-12-3 3.88 850
Q4 4.41 8,600

Q-16-4 5.19 570

specifically, the source term

f(x;φ) = aφ · 1 + |a|(y cosφ+ x sinφ), (4.37)
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is added and the Dirichlet boundary conditions are designed so that the exact solution

to problem (2.1) is

cex(x;φ) = x · 1 + xy
︸ ︷︷ ︸

slowly varying

+

(
eaφ·(x−1) − e−aφ·1

e−aφ·1 − 1

)

︸ ︷︷ ︸

rapidly varying

. (4.38)

This exact solution contains two scales: a rapidly-varying exponential and a slowly-

varying polynomial. Because of this multi-scale behavior, a true DEM element whose

approximation basis includes the enrichment as well as the polynomial fields (ch =

cP + cE) is used to solve this problem.

The performance results obtained for this problem and summarized in Tables 4.12–

4.13 demonstrate once again the superior accuracy and computational efficiency of the

DEM methodology, this time for the solution of inhomogeneous advection-diffusion

problems.

Table 4.12: Inhomogeneous boundary layer problem of Section 4.5.3 with Pe ≤ 103:
relative errors in the L2(Ω) broken norm for uniform discretizations with approxi-
mately 1,600 dofs (non-stabilized Galerkin vs. DEM elements)

Pe φ/π Q1 Q-5-1+ Q2 Q-9-2+

102

0 6.23 × 10−2 4.34 × 10−5 1.14 × 10−2 2.52 × 10−5

1/4 6.23 × 10−2 4.14 × 10−4 9.23 × 10−4 1.26 × 10−4

1/2 6.21 × 10−1 4.34 × 10−5 1.14 × 10−2 2.40 × 10−5

103

0 11.6 × 10−1 2.07 × 10−4 8.72 × 10−2 1.39 × 10−4

1/4 6.76 × 10−2 3.06 × 10−3 4.38 × 10−3 5.87 × 10−5

1/2 6.57 × 10−1 2.07 × 10−4 8.72 × 10−2 1.07 × 10−4

Pe φ/π Q3 Q-13-3+ Q4 Q-17-4+

102

0 6.02 × 10−3 1.11 × 10−6 2.36 × 10−3 1.09 × 10−7

1/4 3.75 × 10−4 1.51 × 10−5 1.11 × 10−4 4.50 × 10−8

1/2 6.02 × 10−3 1.11 × 10−6 2.36 × 10−3 4.33 × 10−7

103

0 6.92 × 10−2 1.01 × 10−5 5.22 × 10−2 3.79 × 10−6

1/4 3.36 × 10−3 1.90 × 10−5 2.47 × 10−3 2.00 × 10−6

1/2 6.92 × 10−2 1.01 × 10−5 5.22 × 10−2 7.95 × 10−6
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Table 4.13: Inhomogeneous boundary layer problem of Section 4.5.3 with Pe = 106:
relative errors in the L2(Ω) broken norm for uniform discretizations with approxi-
mately 1,600 dofs (non-stabilized Galerkin vs. advection-limited DEM elements)

Pe φ/π Q1 Q-5-1+ Q2 Q-9-2+

106

0 1.26 × 102 2.16 × 10−2 1.20 3.12 × 10−4

1/4 1.26 × 102 3.24 × 10−2 1.52 4.62 × 10−5

1/2 1.26 × 102 2.87 × 10−2 1.20 1.87 × 10−5

Pe φ/π Q3 Q-13-3+ Q4 Q-17-4+

106

0 3.81 × 10−1 8.12 × 10−5 3.72 × 10−1 5.12 × 10−4

1/4 1.49 1.05 × 10−5 7.05 × 10−1 1.36 × 10−6

1/2 3.81 × 10−1 1.45 × 10−5 3.72 × 10−1 1.03 × 10−4

Table 4.14 shows that for this two-scale problem, the DEM elements Q-5-1+, Q-

9-2+, Q-13-3+, and Q-17-4+ exhibit convergence rates of approximately 2, 3, 4 and

5, respectively (Figure 4.9). Therefore, they are comparable from this viewpoint

to the standard Galerkin Q1, Q2, Q3, and Q4 elements except that they possess

dramatically smaller error constants. For Pe = 103, the DEM element Q-17-4+

delivers the same accuracy as Q-13-3+ and Q-9-2+ but using 2.5 and 13.8 times

fewer dofs, respectively (Table 4.14). This illustrates the higher-order behavior of a

DEM element with an increasing value of nE. Also for Pe = 103, a relative error

equal to 0.1% can be achieved by the DEM elements Q-5-1+, Q-9-2+, Q-13-3+, and

Q-17-4+ using approximately 23.2, 4.75, 14, and 15.1 times fewer dofs than by the

Galerkin Q1, Q2, Q3, and Q4 elements, respectively. Perhaps more illustrative than

the relative errors reported in Tables 4.12 and 4.13 are the plots of the computed

solutions displayed in Figure 4.10. Whereas even the relatively high-order Q3 solution

is shown to exhibit spurious oscillations, the DEM Q-13-3+ solution is shown to

be virtually indistinguishable from the exact solution in the entire computational

domain.
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Figure 4.9: Convergence rates for the inhomogeneous boundary layer problem of
Section 4.5.3 with φ = π/4 and Pe = 102

Table 4.14: Convergence rates for the inhomogeneous boundary layer problem of
Section 4.5.3 with φ = π/4

Element
Convergence rate Required # dofs to achieve

(Pe = 102) a relative error of 10−3 (Pe = 103)

Q1 1.74 203,005
Q-5-1+ 2.08 8,742
Q2 2.79 14,700

Q-9-2+ 2.91 3,100
Q3 3.66 8,000

Q-13-3+ 3.97 570
Q4 4.65 3,400

Q-17-4+ 4.95 225

4.5.4 Double ramp problem on an L–shaped domain

The final benchmark problem is a variant of the double ramp problem used in [63] for

testing stabilized finite elements with mesh refinement. The domain is an L-shaped
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Figure 4.10: Plots of approximated and exact solutions of the inhomogeneous bound-
ary layer problem of Section 4.5.3 with φ = 0, 1,600 dofs and Pe = 103

region Ω = [(0, 1) × (0, 1)]\[(0, 0.5) × (0.5, 1)] (Figure 4.11). The Péclet number is

set to Pe ≡ |a| = 103 and the source term of the BVP (2.1) is set to f = Pe.

Homogeneous Dirichlet boundary conditions are prescribed on all six sides of Ω. The

advection direction is set to φ = 0 and therefore the flow moves from left to right. The

solution of this problem is not available analytically; however, it is known to exhibit

a strong outflow boundary layer along the line x = 1, two crosswind boundary layers

along y = 0 and y = 1, and a crosswind internal layer along y = 0.5 (Figure 4.12).

The nature of this solution is therefore different from that of the BVPs considered

in the three previous sections. Indeed, this problem is one of the most stringent

benchmark problems for advection-diffusion.

A reference solution for this problem that is free from any spurious oscillation

is computed on a uniform mesh with 43,200 elements. The performance results of

computations on unstructured meshes are reported in Table 4.15. They reveal that for

this problem, the lower-order DGM elements provide only a moderate improvement

over the Galerkin elements. The DEM elements provide a dramatic improvement of

orders of magnitude in both accuracy and computational efficiency.

Figures 4.13–4.16 show four cross-sections of the nodal values of the numerical

solutions computed using the DGM and DEM elements and their standard Galerkin

counterparts. The Galerkin solutions exhibit noticeable oscillations in the y = const

plane near the outflow boundary. These are even present in the higher-order Q4
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Figure 4.12: Plots of approximated solutions of the double ramp problem of Section
4.5.4 with Pe = 103 and 1,200 elements

solution. On the other hand, no oscillation is seen in the computed DGM and DEM

solutions. The DGM elements appear to experience a small numerical difficulty but

only along the location of the crosswind internal layer (line y = 0.5)
(
Figure 4.14

(b)
)
. The polynomial component of the DEM elements appear to resolve this issue

completely
(
Figure 4.14 (c)

)
.

The computed Q3, Q-12-3 and Q-13-3+ solutions are plotted on the entire domain

in Figure 4.12. Again, oscillations are evident in the Galerkin solutions. On the other

hand, the DGM and DEM solutions are free from any spurious oscillation. Figure
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Table 4.15: Double ramp problem of Section 4.5.4: relative errors in the L2(Ω) broken
norm (Pe = 103, uniform discretizations, non-stabilized Galerkin vs. DGM and DEM
elements)

Number of elements Q2 Q-8-2 Q-9-2+

300 2.72 × 10−1 1.19 × 10−1 4.11 × 10−2

1, 200 1.23 × 10−1 6.07 × 10−2 8.47 × 10−3

4, 800 5.26 × 10−2 2.81 × 10−2 1.65 × 10−3

10, 800 2.92 × 10−2 1.54 × 10−2 7.43 × 10−4

Number of elements Q3 Q-12-3 Q-13-3+

300 1.49 × 10−1 1.11 × 10−1 2.80 × 10−2

1, 200 6.57 × 10−2 5.00 × 10−2 4.71 × 10−3

4, 800 2.36 × 10−2 1.02 × 10−2 8.24 × 10−4

10, 800 1.08 × 10−2 4.54 × 10−3 9.75 × 10−5

Number of elements Q4 Q-16-4 Q-17-4+

300 9.58 × 10−2 8.32 × 10−2 2.16 × 10−2

1, 200 3.78 × 10−2 1.33 × 10−2 2.94 × 10−3

4, 800 1.03 × 10−2 9.17 × 10−3 1.26 × 10−4

10, 800 3.70 × 10−3 4.92 × 10−4 2.12 × 10−5

4.12 (b) suggests that the error in the DGM solutions can be partially attributed

to small but noticeable discontinuities in these solutions in certain regions of the

domain. The DGM solutions are nonetheless far more physically correct than the

Galerkin solutions.
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Figure 4.13: Nodal values of approximated solutions of the double ramp problem of
Section 4.5.4 along the line y = 0.25 with 1,200 elements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

 

 

Q
2

Q
3

Q
4

(a) Galerkin

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

 

 

Q−8−2
Q−12−3
Q−16−4

(b) DGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

 

 

Q−9−2+
Q−13−3+
Q−17−4+

(c) DEM

Figure 4.14: Nodal values of approximated solutions of the double ramp problem of
Section 4.5.4 along the line y = 0.5 with 1,200 elements
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Figure 4.15: Nodal values of approximated solutions of the double ramp problem of
Section 4.5.4 along the line x = 0.5 using 1,200 elements
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Figure 4.16: Plots of approximated solutions of the double ramp problem of Section
4.5.4 along the line x = 0.95 using 1,200 elements



Chapter 5

DEM for the 2D

variable-coefficient

advection-diffusion equation

In Chapter 4, DEM was developed and demonstrated for constant-coefficient advection-

diffusion problems. In this chapter, attention is turned to the 2D variable-coefficient

advection-diffusion equation – that is, (1.2) with an advection field a(x) that is al-

lowed to vary spatially, unlike in Chapter 4. The diffusivity κ is assumed to be

spatially constant, but there is no loss of generality in the formulation of the method

by making this assumption (Remark 5.1.1).

5.1 The enrichment space VE

Suppose that a = a(x) in Ω — that is, the advection direction varies in the spatial

domain. The extension of the DEM methodology developed in Chapter 4 to variable

coefficient transport problems is motivated by the observation that, even when a =

a(x), a ≡ ae ≈ constant within each element Ωe ⊂ Ω̃ when the mesh is refined. In

other words, the variable-coefficient PDE (1.2) over Ω can be approximated by the

84
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following set of local constant-coefficient PDEs over the elements Ωe comprising Ω

{a(x) · ∇c− κ∆c = f(x) in Ω} ≈ ∪nel

e=1 {ae · ∇c− κ∆c = f(x) in Ωe} . (5.1)

Here, ae is a spatially constant value of the advection field associated with element

Ωe, e.g., if a(x) is available analytically

ae ≡ a(x̄e), x̄e = center point of Ωe, (5.2)

(Figure 5.1). To this effect, in the variable-coefficient case, the enrichment field of

DEM is chosen as

VE = ∪nel

e=1{VE
e }, (5.3)

where

VE
e ⊂

{
cEe ∈ L2(R2) : LcEe = ae · ∇cEe − κ∆cEe = 0

}
, (5.4)

for elements Ωe ⊂ Ω̃. By analogy with (4.1), the (exponential) free-space solutions of

the local, constant-coefficient equations (5.4) are

cEe (x; θe
i ) = exp

{
1

2κ

(

ae
φ + ae

θei

) (
x − xe

r,i

)
}

∈ VE
e , (5.5)

where φe is the advection direction local to element Ωe defined by

ae
1 = |ae| cosφe, ae

2 = |ae| sinφe, (5.6)

and

ae
φ ≡ |ae|

(

cosφe, sinφe
)T

, ae
θei

≡ |ae|
(

cos θe
i , sin θe

i

)T

. (5.7)

Here, θe
i is the angle parameter defining the ith enrichment function inside element Ωe

and (xe
r,i, y

e
r,i) is, as before, an arbitrary reference point for the ith enrichment function

inside element Ωe. The set

Θc
e ≡

{

set of angles {θe
i ∈ [0, 2π)}nE

i=1 defining VE
e

}

(5.8)
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specifying the enrichment space inside element Ωe is defined by analogy with (4.5).

In this case however, the enrichment functions defining VE (4.1) will differ in general

from one element Ωe of the domain to another.

Remark 5.1.1. Although the discussion above has assumed that the diffusivity κ

is spatially constant, so that only a(x), the advection velocity, is allowed to vary,

the approach outlined herein is not limited to the constant diffusivity case. When

κ = κ(x), the enrichment functions for the advection-diffusion equation would be

defined by analogy to (5.5) but with κ(x) frozen locally inside each element.

It is worthwhile to investigate the relation between the local variable-coefficient

enrichment functions comprising (5.4) and the governing variable-coefficient PDE

being solved. Assume that a(x) ∈ C1(Ωe) so that the following Taylor expansion

around the element’s center point x̄e can be justified:

a(x) = a(x̄e) + ∇a|x=x̄e · (x − x̄e) + O(x − x̄e)2 in Ωe. (5.9)

The operator governing the PDE (1.2) inside the element Ωe now takes the form

Lc = Lec+ f(c) = 0 in Ωe, (5.10)

where

Lec ≡ a(x̄e) · ∇c− κ∆c, (5.11)

and

f(c) ≡
[
∇a|x=x̄e · (x − x̄e) + O(x − x̄e)2

]
· ∇c. (5.12)

Equation (5.10) is a perturbed constant-coefficient advection-diffusion equation.

The linearization of a(x) (5.9) is essentially a first order approximation of the ad-

vection field. The free-space solutions to the constant-coefficient problems (5.11) can

therefore be viewed as first order approximations of the free-space solutions of the

variable-coefficient transport equation to be solved. The “residual” advection equa-

tion (5.12) acts as a source-like term. From the discussion of Section 2.3.1, more

specifically, the rule of thumb regarding the inclusion of the polynomial field VP in
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the approximation space of an enriched element, it follows that the true DEM dis-

cretization is more appropriate for the solution of variable-coefficient problems than

its DGM counterpart, even when such problems are homogeneous. Nevertheless, it

will be shown in Section 5.6 that for some variable-coefficient homogeneous problems,

pure DGM elements with Vh ≡ VE = ∪eVE
e defined by (5.4) can perform quite well.

ae ≡
(

−yj − h
2

xj + h
2

)

Ωe

¡¡µ ¢¢̧

ae′ ≡
(

−yj − h
2

xj + 3h
2

)

Ωe′

xj xj + h xj + 2h

yj

yj + h

¼6a(x) =
(
−y, x

)T

Figure 5.1: Locally frozen advection fields to enable the construction of enrichment
functions as free-space solutions inside the two adjacent elements Ωe = (xj, xj + h)×
(yj, yj + h) and Ωe′ = (xj + h, xj + 2h) × (yj, yj + h) for an example advection field

a(x) = (−y, x)T

5.2 The Lagrange multiplier approximation space

Wh

It was shown in Section 2.3.3 that the variational formulation of the problem of

interest implies that the space of approximations of the Lagrange multiplier field

should be related to the normal derivatives of the enrichment functions at the element

edges. The expression for the Lagrange multiplier λ in (2.52) was deduced from

(2.51) for the continuous formulation. A problem arises when one attempts to use

(2.52) to compute appropriate discrete Lagrange multiplier approximations λh in the
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variable-coefficient context, however. As will be illustrated shortly, this is because

the enrichment field for a generic variable-coefficient problem is element dependent.

5.2.1 Exponential Lagrange multiplier approximations

Suppose that the discrete Lagrange multiplier approximation λh is defined on Γe,e′

analogously to (2.52) — that is, as

λh|Γe,e′ = span
{

∇cEe (x; θe
i )|Γe,e′ · ne,e′

}

, (5.13)

where span
{
cEe (x; θe

i )
}

is the enrichment field (5.5) inside element Ωe and ne,e′ denotes

the outward unit normal to Γe,e′ . Implicit in the expression (5.13) is the assumption

that ∇cEe ·ne,e′ is defined on Γe,e′ . However, for a non-constant a(x) and the enrichment

space given by (5.3) and (5.4), the normal derivative ∇cE
e ·ne,e′ is typically undefined.

For concreteness, consider a discretization of the domain Ω by a (structured or

unstructured) mesh of quadrilateral elements Ωe (Figure 2.1). Let Γe,e′ be a straight

edge separating two adjacent elements Ωe and Ωe′ , but viewed as an edge belonging to

Ωe (Figure 4.4 with h = lij, e = ei and e′ = ej). It is straightforward to parameterize

this edge with respect to an arc-length coordinate 0 ≤ s ≤ h, where h is the length

of this edge (see Section 4.2.1). Denoting by αe,e′ ∈
[
0, π

2

]
the angle Γe,e′ makes with

the x-axis, the normal derivatives of the enrichment functions in elements Ωe and Ωe′

are given by

∇cEe (x; θe
i )|Γe,e′ · ne,e′ = C1 exp

{
1

2κ

[(

ae
φ + ae

θei

)

· te,e′
]

(s− se,e′

r,i )

}

, (5.14)

and

∇cEe′(x; θe′

i )|Γe′,e · ne′,e = C2 exp

{
1

2κ

[(

ae′

φ + ae′

θe
′
i

)

· te,e′
]

(s− se,e′

r,i )

}

, (5.15)

respectively, where C1 ≡ 1
2κ

(

ae
φ + ae

θei

)

· ne,e′ and C2 ≡ 1
2κ

(

ae′

φ + ae′

θe
′
i

)

· ne′,e are two

constants, te,e′ is the unit tangent vector to Γe,e′ and 0 ≤ se,e′

r,i ≤ h is an arbitrary

reference point introduced for the stable evaluation of exponentials on Γe,e′ . The
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argument of the exponential in (5.14) is denoted from this point forward by

Λe(θe
i ) ≡ Λe

i ≡
1

2κ

[(

ae
φ + ae

θei

)

· te,e′
]

=
|ae|
2κ

[

cos(φe − αe,e′) + cos(θe
i − αe,e′)

]

.

(5.16)

From the comparison of (5.14) and (5.15), it follows that if ae 6= ae′ ,

∇cEe (x; θe
i )|Γe,e′ · ne,e′ 6= −∇cEe′(x; θe′

i )|Γe′,e · ne′,e (5.17)

even for θe
i = θe′

i . This implies that, in this case, a normal derivative of an enrichment

function along the edge Γe,e′ (5.13) is not well defined.

One approach for remedying the problem exhibited above is to extend the enrich-

ment space V = ∪eVE
e (5.3) to the element edges. This extension is denoted here by

VE
e,e′ and constructed only for the sake of enabling the approximation of the Lagrange

multiplier field using an approach similar to that of (5.13). For this purpose, let ae,e′

denote a constant advection velocity associated with the edge Γe,e′ , for example,

ae,e′ ≡ a(x̄e,e′), where x̄e,e′ = midpoint of Γe,e′ . (5.18)

Then, for a specified angle θe,e′

i ∈ [0, 2π),

cEe,e′(x; θe,e′

i ) ≡ exp

{
1

2κ

(

ae,e′

φ + ae,e′

θe,e
′

i

)(

x − xe,e′

r,i

)}
∣
∣
∣
∣
Γe,e

′

∈ VE
e,e′ , (5.19)

is an ith auxiliary enrichment function defined on the edge Γe,e′ . Replacing cEe (x; θi)|Γe,e′
by cEe,e′(x; θe,e′

i ) (5.19) in (5.13) leads to the discrete Lagrange multiplier approxima-

tion

λh|Γe,e′ = span
{

∇cEe,e′(x; θe,e′

i ) · ne,e′
}

= span
{

eΛ
e,e′

i (s−se,e
′

r,i ), 0 ≤ s ≤ h
}

, (5.20)

where

Λe,e′(θe,e′

i ) ≡ Λe,e′

i ≡ 1
2κ

[(

ae,e′

φ + ae,e′

θe,e
′

i

)

· te,e′
]

= |ae,e′ |
2κ

[

cos(φe,e′ − αe,e′) + cos(θe,e′

i − αe,e′)
]

.
(5.21)
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From (5.21) and (5.20), it follows that λh|Γe,e′ = −λh|Γe′,e which implies that λh|Γe,e′
is well defined on Γe,e′ .

The approximation (5.20) can be justified by a Taylor analysis. Expanding (5.14)

and the generic function defining the span in (5.20) in a Taylor series leads to

∇cEe (x; θe
i )|Γe,e′ · ne,e′ = C1

[

1 + Λe
i (s− se,e′

r,i ) +
1

2
[Λe

i ]
2(s− se,e′

r,i )2 + O(s− se,e′

r,i )3

]

,

(5.22)

so that

λh(s)|Γe,e′ = 1 + Λe,e
i (s− se,e′

r,i ) +
1

2
[Λe,e′ ]2(s− se,e′

r,i )2 + O(s− se,e′

r,i )3, (5.23)

respectively. Since |s− se,e′

r,i | ≤ h, it follows that

∣
∣
∣∇cE

e (x; θe
i )|Γe,e′ · ne,e′ − C1λ

h(s)|Γe,e′
∣
∣
∣ = C1

∣
∣
∣(Λe

i − Λe,e′

i )(s − s
e,e′

r,i )

+1
2

(

[Λe
i ]

2 − [Λe,e′

i ]2
)

(s − s
e,e′

r,i )2 + O(s − s
e,e′

r,i )3
∣
∣
∣

≤ C1

∣
∣
∣(Λe

i − Λe,e′

i )h
∣
∣
∣+ O(h2),

(5.24)

which → 0 when h→ 0. A similar result can be established for the difference

∣
∣
∣∇cEe′(x; θe′

i )|Γe′,e · ne′,e − C2λ
h(s)|Γe′,e

∣
∣
∣. (5.25)

The implication of this analysis is that, as the mesh is refined, the normal derivatives

of the enrichment functions cEe and cEe′ inside the adjacent elements Ωe and Ωe′ ap-

proach the normal derivative of the auxiliary enrichment function cE
e,e′ (5.19) which is

equally defined on the edges Γe,e′ and Γe′,e. This in turn justifies the choice (5.20) for

approximating the Lagrange multipliers in the case of a variable advection coefficient.

5.2.2 Lagrange multiplier selection

As in the case of the constant-coefficient advection-diffusion equation (Chapter 4),

the set Θc
e (5.8) typically leads to too many Lagrange multiplier dofs (5.13) in the

sense that condition (2.49) fails. For this reason, the space of Lagrange multiplier
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approximations is constructed as Wh = ∪e ∪e′<e Wh
e,e′ where

Wh
e,e′ ≡ span

{

∇cEe,e′(x; θλe,e
′

i )|Γe,e′ · ne,e′ : θλe,e
′

i ∈ Θλ
e,e′ , n

λ ≡ card{Θλ
e,e′} =

⌊
nE

4

⌋}

,

(5.26)

and nλ is the number of Lagrange multiplier dofs per edge.

Recall that, in Section 4.2.2, in the context of a constant-coefficient advection-

diffusion problem, a set of angles, denoted there by Θλ and used for constructing

Lagrange multiplier approximations was chosen independently from the set of angles

Θc used for selecting enrichment functions for the approximation of the primal solu-

tion. In the present chapter, this approach is modified slightly to take into account

an important effect of a varying advection coefficient. Underlying this modification

is the assumption that, to span as well as possible the space of all exponentials of the

form {eA : Amin ≤ A ≤ Amax}, A should be uniformly distributed between Amin and

Amax. Hence, if

Λe,e′

min ≡ min
θλ
e,e′

i ∈[0,2π)

Λe,e′(θλe,e
′

i ) and Λe,e′

max ≡ max
θλ
e,e′

i ∈[0,2π)

Λe,e′(θλe,e
′

i ), (5.27)

where Λe,e′(θλe,e
′

i ) is defined as in (5.21), the angles θλe,e
′

i are implicitly chosen here

so that the corresponding values of Λe,e′(θλe,e
′

i ) are uniformly sampled in the interval

[Λe,e′

min,Λ
e,e′

max].

The extrema of (5.21) can be computed analytically by taking the derivative of

the function Λe,e′(θ) – which is plotted in Figure 5.2 for straight edges that are aligned

with the x- and y-axes – with respect to θ, setting it to zero, and solving

dΛe,e′

dθ
=

|ae,e′ |
2κ

sin(αe,e′ − θ∗) = 0

⇒ θ∗ = αe,e′ − nπ, n ∈ Z.
(5.28)

Substituting θ∗ = αe,e′ − nπ into (5.21) gives

Λe,e′

min =
1

2κ
(ae,e′

φ · te,e′ − |ae,e′ |), for θλe,e
′

min = αe,e′ + π, (5.29)



CHAPTER 5. VARIABLE-COEFFICIENT ADVECTION-DIFFUSION 92

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Λe, e′
min

Λe, e′
max

θλ

Λ
e,

 e
′

(a) On edges aligned with the x–axis (α = 0)

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Λe, e′
min

Λe, e′
max

θλ

Λ
e,

 e
′

(b) On edges aligned with the y–axis
(

α =
π

2

)

Figure 5.2: Λe,e′(θ) for the case of a quadrilateral element — extrema are marked by
circles (a1 = a2 = κ = 1)

and

Λe,e′

max =
1

2κ
(ae,e′

φ · te,e′ + |ae,e′ |), for θλe,e
′

max = αe,e′ . (5.30)

From (5.29) and (5.30), it follows that the size of the interval [Λe,e′

min,Λ
e,e′

max] is

∆Λe,e′ ≡ Λe,e′

max − Λe,e′

min =
|ae,e′ |
κ

. (5.31)

The general procedure for selecting the arguments Λe,e′

i = Λe,e′(θλ
i ) defining the

approximations of the Lagrange multiplier field is summarized in Algorithm 4 and

illustrated in Figure 5.3. The interval [Λe,e′

min,Λ
e,e′

max] is partitioned into (nλ − 1) sub-

intervals of equal size, and the union of zero and the (nλ − 1) endpoints of the

subintervals furthest away from zero51 are taken as the set of Λe,e′

i that appears in

the argument of the exponential in (5.20). The approach adopted here is to include

the constant Lagrange multiplier approximation in Wh
e,e′ , generated by Λe,e′

i = 0.

The constant Lagrange multiplier can be viewed as a coarse scale approximation,

15It is straightforward to show that the function Λe,e′

i (5.16) has necessarily a zero in the interval

(Λe,e′

min,Λe,e′

max), or at one of its endpoints.
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included in the definition of Wh
e,e′ in order to balance the fine scales represented by

the remaining (nλ − 1) exponential Lagrange multiplier approximations.

Remark 5.2.1. When ae,e′ ≡ 0 on an edge Γe,e′ — which is the case, for example,

when the advection velocity satisfies a no-slip boundary condition — and nλ > 1, all

of the Lagrange multiplier approximations (5.20) evaluate to constants. To avoid such

a redundancy, polynomial Lagrange multiplier approximations are adopted instead of

exponential ones on edges where |ae,e′ | ≈ 0.

r r r r×
Λe,e′

min Λe,e′

maxΛe,e′

i∗0

²¯
? r r r r×

Λe,e′

min Λe,e′

max

Λe,e′

1 Λe,e′

4Λe,e′

2 Λe,e′

3

Λe,e′

i∗ ≡ 0

(a) Case 1: |Λe,e′

i∗ | > 1
2
Le,e′ (i∗ = 3)

r r r r×
Λe,e′

min Λe,e′

maxΛe,e′

i∗ 0

²
?̄ r rr r×

Λe,e′

min Λe,e′

maxΛe,e′
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Λe,e′

1 Λe,e′

4Λe,e′

2 Λe,e′

3

(b) Case 2: |Λe,e′

i∗ | < 1
2
Le,e′ (i∗ = 2)
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Λe,e′

min Λe,e′

maxΛe,e′

i∗ 0

²
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Λe,e′

min Λe,e′
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Λe,e′
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3
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i∗ | = 1
2
Le,e′ (i∗ = 2)

Figure 5.3: Illustration of the Lagrange multiplier selection procedure (Algorithm 4)
for nλ = 4
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Algorithm 4 Construction of the Lagrange multiplier approximation field

Given nE exponential enrichment functions (5.5), set nλ =
⌊

nE

4

⌋

per (2.50).

Select a tolerance δ > 0, δ << 1.
for all edges Γe,e′ in the mesh do

if |ae,e′ | < δ then
Employ polynomial Lagrange multipliers on Γe,e′ .

else
Compute Λe,e′

min and Λe,e′

max using (5.29) and (5.30) respectively.
Set

Le,e′ ≡ ∆Λe,e′

(nλ − 1)
=

|ae,e′ |
κ(nλ − 1)

. (5.32)

for i = 1 to nλ do
Set

Λe,e′

i = Λe,e′

min + (i− 1)Le,e′ . (5.33)

end for
Find the index

i∗ = min
{

argmin1≤i≤nλ |Λe,e′

i |
}

. (5.34)

Set Λe,e′

i∗ = 0.

Return the set {Λe,e′

i }nλ

i=1 and define the Lagrange multipliers as in (5.20).
end if

end for

5.3 Augmentation of VE

Numerical tests (Section 5.6) suggest that the performance of DEM when applied to

some variable-coefficient transport problems can be improved by adding to the space

of exponential enrichment functions (5.5) some of the other free-space solutions to

(1.2) derived in Chapter 3.

5.3.1 Augmentation of VE by polynomial free-space solutions

to the 2D advection-diffusion equation

In Chapter 3, a family of polynomial free-space solutions to the advection-diffusion

equation with constant coefficients (1.2) was derived (Section 3.1.2). Up to this
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point, these polynomial free-space solutions were not included in the design of the

enrichment space VE. It was found numerically (Section 4.5) that DEM performed

quite well without these polynomial enrichment functions, and indeed our objective

was to capture exponential boundary layers.

In an attempt to make VE
e as rich as possible given the information available, the

following definition of VE
e (5.4) is proposed

VE
e ≡ Vexp

e ⊕ Vpol
e , (5.35)

where

Vexp
e ≡

{

cEe ∈ L2(Ω̃) : c|EΩe(x, y) =
nexp
∑

i=1

cic
exp
e,i (x; θe

i ), ci ∈ R

}

, (5.36)

cexp
e,i (x; θe

i ) = e

„

ae1+|ae| cos θei
2κ

«

(x−xer,i)
e

„

ae2+|ae| sin θei
2κ

«

(y−yer,i)
, 0 ≤ θe

i < 2π, (5.37)

and

Vpol
e ≡






cE ∈ L2(Ω̃) : c|EΩe(x, y) =

npol−1∑

i=0

cic
pol
e,i (x), ci ∈ R






. (5.38)

From Section 3.1.2,

cpol
e,0 (x) = 1, (5.39)

cpol
e,1 (x) = |ãe

2x− ãe
1y|, (5.40)

cpol
e,2 (x) = (ãe

2x− ãe
1y)

2 + 2(ãe · x), (5.41)

cpol
e,3 (x) = (ãe

2x− ãe
1y)

3 + 6(ãe
2x− ãe

1y)(ã
e · x), (5.42)

in (5.38), and so on, where it is recalled that ãe ≡ ae/κ. Note that Vexp (5.36) is

exactly the exponential enrichment space spanned by the functions (5.5).

Remark 5.3.1. For constant-coefficient problems (Chapter 4), the enrichment space

VE can be defined by the direct sum (5.35) as well, if desired.

Remark 5.3.2. To avoid possible linear dependence of the functions cpole,n(x) (5.38)

with the standard Galerkin polynomial shape functions comprising VP , the rule of
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thumb of excluding VP from Vh when designing elements for which VE
e is given by

(5.35) will be adopted. That is, elements for which VE
e is given by (5.35) will be, by

construction, pure DGM elements (second line of (2.38)) – Section 5.4.

5.3.2 Augmentation of VE by a “higher order” enrichment

function

The enrichment functions comprising the space (5.35) can be viewed as first order

enrichment functions for a variable-coefficient advection-diffusion BVP, in the sense

that these functions solve (1.2) with a(x) linearized to first order:

a(x) ≈ a(x̄e) in Ωe. (5.43)

Defining the enrichment spaces in this way may limit the performance of DEM when

the method is used to solve variable-coefficient problems. To address this possible

limitation, suppose a(x) is linearized to second order instead of to first order (5.43),

that is:

a(x) ≈ a(x̄e) + ∇a|x=x̄e · (x − x̄e) in Ωe, (5.44)

where ∇a|x=x̄e denotes the advection gradient tensor evaluated at the element mid-

point x̄e:

∇a|x=x̄e =

(
∂a1

∂x
(x̄e) ∂a1

∂y
(x̄e)

∂a2

∂x
(x̄e) ∂a2

∂y
(x̄e)

)

. (5.45)

With the approximation (5.44), (1.2) is of the form

[Aex + be] · ∇c− ∆c = 0, (5.46)

where

Ae ≡ ∇a|x=x̄e

κ
, be ≡

(
ae

κ
− ∇a|x=x̄e

κ
x̄e

)

. (5.47)

The free-space solutions to the variable-coefficient advection-diffusion equation

(5.46) were derived in Section 3.2. Hence, the approximation space VE
e described
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earlier can be augmented as follows:

VE
e ≡ Vexp

e ⊕ Vpol
e ⊕ Verf

e , (5.48)

where

Verf
e ≡ span

{

erf

(√
−2σe

−
2

(

ve
− · x +

ve
− · be

σe
−

))}

, (5.49)

with

(σe
−,v

e
−) ≡ {(σ,v) : Aev = σv, σ ∈ R, σ < 0} . (5.50)

That is, σe
− in (5.49) is the negative real eigenvalue, if there is such an eigenvalue, of

Ae (5.47) and ve
− is its corresponding eigenvector2. The enrichment comprising Verf

e

(5.49) can be viewed as a “higher order” enrichment. It is “higher order” in the sense

that a linear combination of this function and a constant, namely

cE(x) =
∫ vi·x
0

exp
{

σi
2
w2 + [vi · b]w

}
dw

=
√

2π
2
√−σi

exp
{

−(vi·b)2

2σi

}[

erf
(√

−2σi
2

[

(vi · x) + vi·b
σi

])

+ erf
(√

2(vi·b)

2
√−σi

)]

,

(5.51)

as shown in Section 3.2, solves

[ae + ∇a|x=x̄e(x − x̄e)] · ∇c− κ∆c = 0. (5.52)

Remark 5.3.1. The following are some connections between the character of the

functions (5.49) and the physics of the flow field a(x):

• In the case when a(x) represents the velocity field, ∇a is the velocity gradient

tensor.

• In the case of an incompressible flow (∇ · a = 0), tr(A) = 0, so that the

eigenvalues (5.50) simplify to:

σ± = ±
√

∆, (5.53)

2It can be shown that if a(x) is incompressible and has real eigenvalues, one of these eigenvalues
is necessarily negative; Remark 5.3.1.



CHAPTER 5. VARIABLE-COEFFICIENT ADVECTION-DIFFUSION 98

which are either purely real or purely imaginary, where ∆ was defined earlier in

(3.52).

• In an irrotational (2D) flow, ∇a is symmetric. A consequence of this fact is

that all its eigenvalues are real.

• In a fluid mechanics context, when I(∇a) 6= 0, we are in a region known as the

vortex core of the flow [64].

Remark 5.3.2. The higher order function (5.49) is employed only inside elements

for which ∇a|x=x̄e has a negative, real eigenvalue. When σ > 0 or I(σ) 6= 0 (where

I(z) denotes the imaginary part of a complex number z ∈ C), the functions specified

by (5.49) are not good representations of the solutions to the sorts of boundary value

problems considered here, as suggested by the LLS qualifying test described in Section

2.5.

5.4 DGM and DEM element design

5.4.1 Nomenclature and computational complexity

In this section, several low and higher-order quadrilateral DGM and DEM elements

are proposed for the solution to variable-coefficient transport problems. The nota-

tion used for describing these elements is summarized in Table 5.1. As before, ‘Q’

Table 5.1: DGM and DEM Element Nomenclature

Element Type VE Notation

DGM
(Vh = VE)

Vexp Q-nexp-nλ

Vpol ⊕ Vexp Q-(npol, nexp)-nλ

Vpol ⊕ Vexp ⊕ Verf Q-(npol, nexp)∗-nλ

DEM
(Vh = VP ⊕ VE)

Vexp Q-nexp-nλ+

Vexp ⊕ Verf Q-nexp∗-nλ+
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stands for quadrilateral. The integers nexp and npol denote the number of exponen-

tial enrichment functions (cardinality of the set Θc
e) and the number of polynomial

enrichment functions (deg(Vpol) + 1), respectively. The integer nλ is the number of

Lagrange multiplier dofs per edge (cardinality of the set {Λe,e′

i }). The + superscript

designates a true DEM element (Vh = VP ⊕ VE) and distinguishes it from a pure

DGM element (Vh = VE). The polynomial approximation VP of all four considered

DEM elements is chosen to be that of the standard bilinear element Q1. The ∗ super-

script indicates that the enrichment space of the element has been augmented by the

“higher order” error function enrichment (5.49). For the Q-(npol, nexp)∗-nλ elements,

nE = nexp + npol + 1. Otherwise, for the Q-(npol, nexp)-nλ and Q-(npol, nexp)-nλ+

elements, nE = nexp + npol; for the Q-nexp-nλ and Q-nexp-nλ+ elements, nE = nexp.

In this section, proposed first are four DGM elements Q-4-1, Q-8-2, Q-12-3 and

Q-16-4 and four DEM elements Q-5-1+, Q-9-2+, Q-13-3+ and Q-17-4+ for which

VE = Vexp. For all of these elements, Θc
e is chosen as

Θc
e = {θe

m}nE

m=1 ≡ φe + {βm}nE

m=1 with βm =
2(m− 1)π

nE
∈ [0, 2π), (5.54)

where nE = nexp. (5.54) leads to the specifications of Table 5.2.

Proposed also are four additional DGM elements Q-(4, 0)-1, Q-(4, 5)-2, Q-(4, 9)-3

and Q-(4, 13)-4 for which VE = Vpol ⊕ Vexp. The specifications of these elements

are summarized in Table 5.2 as well. For each of these elements npol = 4, so that

Vpol consists of polynomial free-space solutions to the constant-coefficient advection-

diffusion equation up to degree three (5.39)–(5.42). For the first element, denoted by

Q-(4, 0)-1, nexp = 0, so that VE = Vpol.

The computational complexities and stencil widths of the DGM and DEM ele-

ments just described can be inferred from Table 2.2 for the case of a uniform mesh

with nel = n × n quadrilateral elements, assuming that static condensation of the

enrichment dofs is implemented at the element-level (see Section 2.4.2). Some of the

elements’ key computational properties are summarized below.

• The stencil of a DGM discretization is in general smaller than that of its

Galerkin comparable.
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Table 5.2: Enrichment spaces of the proposed DGM and DEM elements for variable-
coefficient transport problems

Element nE Θc
e deg{Vpol}

DGM element

Q-4-1 4 φe +
{π

2
(m− 1) : m = 1, ..., 4

}

−
Q-(4, 0)-1 4 − 3
Q-(4, 0)∗-1 5 − 3

Q-8-2 8 φe +
{π

4
(m− 1) : m = 1, ..., 8

}

−

Q-(4, 5)-2 9 φe +

{
2π

5
(m− 1) : m = 1, ..., 5

}

3

Q-(4, 5)∗-2 10 φe +

{
2π

5
(m− 1) : m = 1, ..., 5

}

3

Q-12-3 12 φe +
{π

6
(m− 1) : m = 1, ..., 12

}

−

Q-(4, 9)-3 13 φe +

{
2π

9
(m− 1) : m = 1, ..., 9

}

3

Q-(4, 9)∗-3 14 φe +

{
2π

9
(m− 1) : m = 1, ..., 9

}

3

Q-16-4 16 φe +
{π

8
(m− 1) : m = 1, ..., 16

}

−

Q-(4, 13)-4 17 φe +

{
2π

13
(m− 1) : m = 1, ..., 13

}

3

Q-(4, 13)∗-4 18 φe +

{
2π

13
(m− 1) : m = 1, ..., 13

}

3

DEM element

Q-5-1+ 5 φe +

{
2π

5
(m− 1) : m = 1, ..., 5

}

−

Q-9-2+ 9 φe +

{
2π

9
(m− 1) : m = 1, ..., 9

}

−

Q-13-3+ 13 φe +

{
2π

13
(m− 1) : m = 1, ..., 13

}

−

Q-17-4+ 17 φe +

{
2π

17
(m− 1) : m = 1, ..., 17

}

−

• Any two elements of the following quadruples of DGM and Galerkin elements

have comparable computational complexity: (Q-4-1,Q-(4, 0)-1, Q-(4, 0)∗-1, Q1),

(Q-8-2, Q-(4, 5)-2, Q-(4, 5)∗-2, Q2), (Q-12-3, Q-(4, 9)-3, Q-(4, 9)∗-3, Q3) and (Q-

16-4, Q-(4, 13)-4, Q-(4, 13)∗-4, Q4).
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• Each constructed DEM element Q-nE-nλ+ and Q-nE∗-nλ+ has the same com-

putational complexity as the standard Galerkin element Qnλ+1.

5.4.2 Lagrange multiplier selection

For all DGM and DEM elements summarized in Table 5.2, the Lagrange multiplier

approximations are constructed via the Lagrange multiplier approximation procedure

developed in Section 5.2. The sets of exponential arguments Λe,e′

i associated with these

elements are specified in Table 5.3.

Table 5.3: Lagrange multiplier approximation spaces of the DGM and DEM elements
in Table 5.2 (identified here by the number of Lagrange multiplier dofs per edge, nλ)

nλ {Λe,e′

i } ⊆ Θλ
e,e′ ⊆ λe,e′

h ⊆
1 {0} {φe,e′ + π} {1}
2 {0,Λe,e′

min,Λ
e,e′

max} {φe,e′ + π, αe,e′ + π, αe,e′}
{

1, exp
(

1
2κ

ae,e′

φ · te,e′ ∓ 1
2κ
|ae,e′ |

)}

3

{
0,Λe,e′

mp ,
{
φe,e′ + π, αe,e′ + π

2
,

{

1, exp
(

1
2κ

ae,e′

φ · te,e′
)

,

Λe,e′

min,Λ
e,e′

max

}

αe,e′ + π, αe,e′
}

exp
(

1
2κ

ae,e′

φ · te,e′ ∓ 1
2κ
|ae,e′ |

)}

4

{

0,Λe,e′

min,Λ
e,e′

max ,
{
φe,e′ + π, αe,e′ + π, αe,e′

{

1, exp
(

1
2κ

ae,e′

φ · te,e′ ∓ 1
2κ
|ae,e′ |

)

,

Λe,e′

mp ± 1
6
∆Λe,e′

}
αe,e′ + cos−1

(
∓1

3

)}
exp

(
1
2κ

ae,e′

φ · te,e′ ∓ 1
6κ
|ae,e′ |

)}

The following analysis suggests that the Lagrange multiplier selection procedure

detailed in Section 5.2.2 is appropriate for the Q-(npol, nexp)-nλ elements in Table 5.2.

From Section 3.1.2, an nth degree polynomial free-space solution cpol
n (x) to (1.2)

has the form

cpol
n (x) = |ã × x|n + fn(x, y), (5.55)

where fn(x, y) is an n− 1 degree polynomial. Now, on an edge Γij (4.13),

|ã × x|n|Γij = |(ã × xij
0 ) + (ã × tij)s|n. (5.56)
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Taking the normal derivative of the expression in (5.56) along an edge Γij, it fol-

lows that the polynomial enrichment functions (5.55) give rise to Lagrange multiplier

approximations of the form

λh(s)|Γij =
npol−2∑

k=0

λks
k, 0 ≤ s ≤ lij. (5.57)

That is, if Vpol consists of polynomials up to degree npol − 1, then the Lagrange

multiplier approximations should be polynomials up to degree npol−2. By the rule of

thumb (2.50) (Remark 2.3.2), only bnpol/4c Lagrange multiplier approximations per

edge are to be retained. Now, observe that, for k >> 1 and h → 0, sk → 0. Hence,

it is reasonable to approximate the Lagrange multiplier approximations (5.57) by

λh(s)|Γij =

nλpol∑

k=0

λks
k, 0 ≤ s ≤ lij, (5.58)

where

nλ
pol =

⌊
npol

4

⌋

. (5.59)

For the elements in Table 5.2, npol = 4 so that (5.59) evaluates to nλ
pol = 1. For

nλ
pol = 1, (5.58) is simply the constant approximation. But the constant λh = 1

approximation is, by construction, already contained in the space Wh
ij (Section 5.2).

This suggests that the Lagrange multiplier selection algorithm developed in Section

5.2 need not be modified for the elements Q-(4, 0)-1, Q-(4, 5)-2, Q-(4, 9)-3 and Q-

(4, 13)-4.

5.5 Implementation and computational properties

5.5.1 Analytical evaluation of element-level arrays

As in the constant-coefficient DEM, when κ→ 0 (Pe→ ∞), the numerical integration

by a Gaussian quadrature of the integrals (2.22)–(2.25) becomes highly inaccurate

because of the large magnitudes of the arguments of the exponential enrichment
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functions (5.36). It was shown in Section 4.4.2 that these integrals can be computed

analytically on a mesh with straight-edged elements whose edges are aligned with

the coordinate axes if a is spatially constant. In general, these integrals can still

be evaluated analytically on any mesh with straight-edged elements aligned with the

coordinate axes, provided that the advection field a(x) is a sufficiently simple function.

For example, on a uniform mesh of square elements Ωe ≡ (xj, xj+1) × (yj, yj+1), the

entries of the kEE matrices (2.56), for 1 ≤ l,m ≤ nE, take the form

kEE
lm ≡

∫

Ωe
[(a(x) · ∇cl)cm + κ∇cl · ∇cm]dΩe

=
|ae|
2κ

(cosφe + cos θe
l )I

a1(x)
lm +

|ae|
2κ

(sinφe + sin θe
l )I

a2(x)
lm

+
1

4κ
[(aφ + aθl) · (aφ + aθm)] Idiff

lm ,

(5.60)

where

I
ai(x)
lm ≡

∫ xj+1

xj

∫ yj+1

yj
ai(x)e

|ae|
2κ

(2 cos φe+cos θel+cos θem)(x−xer,l−xer,m)×
e

|ae|
2κ

(2 sin φe+sin θel+sin θem)(y−yer,l−yer,m)dydx,
(5.61)

for i = 1, 2, and

Idiff
lm ≡

[∫ xj+1

xj
e

|ae|
2κ

(2 cos φe+cos θel+cos θem)(x−xer,l−xer,m)dx
]

×
[∫ yj+1

yj
e

|ae|
2κ

(2 sin φe+sin θel+sin θem)(y−yer,l−yer,m)dy
]

.
(5.62)

The diffusion integral Idiff
lm (5.62) can be evaluated analytically as it is simply the prod-

uct of two one-dimensional integrals of exponential functions. Analytic computation

of the advection integrals Iai(x) (5.61) depends on the form of a(x). For a polynomial

ai(x), e.g., ai(x) = xmiyni for some integers mi and ni, a recursive relation can be

derived to compute (5.61) exactly with ease.

In practice, a(x) is likely to be available numerically — that is, at a discrete set of

N points {xe
1, ...,x

e
N} ∈ Ωe. In this case, a(x) can be reconstructed by interpolating

its discrete values at these points using standard Lagrange polynomial interpolation

within each element (Section 5.5.3), making possible the analytic computation of
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(5.61).

5.5.2 Scaling of enrichment functions

To avoid evaluating a very large floating point number on a finite precision arithmetic

machine, the exponential enrichment functions (5.36) are scaled by the effect of an

arbitrary reference point xe
r,i within each element Ωe per the procedure outlined in

Section 4.4.3 (Algorithm 3). The polynomial enrichment functions (5.38) are scaled

as well to prevent numerical overflow and improve matrix conditioning. They are

normalized as follows:

cpol
e,n(x) =

cpol
e,n(x)

maxx∈Ωe |cpol
e,n(x)|

, (5.63)

within each element Ωe.

5.5.3 Interpolation of advection field

In practical applications, the advection field a(x) may not be available in closed

analytic form. Suppose the advection field a(x) is available at a discrete set of N

points, x1, ...,xN : {ai : i = 1, ..., N}, where ai ≡ a(xi). In this case (Sections 5.6.3–

5.6.4), the a(x) that appears in the bilinear form (2.22) will be interpolated from these

discrete values using some appropriate set of interpolation functions. For example,

if the interpolation functions are isoparametric shape functions based on Lagrange

polynomials, a(x) is interpolated inside element Ωe as

ae(ξ) =

# nodes of Ωe
∑

i=1

ae
iφ

e
i (ξ), (5.64)

where ξ ∈ [−1, 1]2 is the usual parent coordinate system (Section 7.1.1), φe
i (ξ) are

the interpolation functions and ae
i are the values of the advection field at the nodes

of an element Ωe.
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5.6 Numerical results

The performances of the DGM and DEM elements described in the previous section

are assessed on four different two-dimensional linear variable-coefficient transport

problems. In each of these problems, the boundary conditions for (1.2) are prescribed

so that boundary layers form as κ → 0 (Pe → ∞), making the solution of these

problems by a standard FEM inefficient. The first two problems are:

• An inhomogeneous BVP with a rotating advection field posed on an L–shaped

domain [Section 5.6.1].

• A homogeneous BVP with a linear advection field, referred to as the “thermal

boundary value problem” [Section 5.6.2].

In these problems, a(x) is given in closed analytical form. It is shown that DEM

can outperform the standard and stabilized Galerkin FEM by a large margin with-

out augmenting the exponential enrichment space (5.36) with additional enrichment

functions, as proposed in Section 5.3.

The last two problems considered in this section are:

• A homogeneous BVP modeling a lid-driven cavity flow [Section 5.6.3].

• A homogeneous BVP posed inside a differentially-heated square cavity [Section

5.6.4].

The advection field a(x) for these problems is obtained by solving an initial boundary

value problem (IBVP) for the time-dependent, incompressible (or near-incompressible)

2D Navier-Stokes equations, and converging this solution to a steady state. Since a(x)

is computed numerically, it is available at a discrete set of points in the domain, rather

than in closed analytical form as in the case of the former two problems. The a(x)

that appears in the bilinear form defining the stiffness matrices is interpolated in-

side each element from these discrete points using Lagrange polynomial interpolation

functions, following the procedure outlined in Section 5.5.3. For the latter two test
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cases, it is shown that the accuracy of the DEM solution can be improved by aug-

menting the exponential enrichment space V exp
e by additional free-space solutions to

variants of the governing equation, as described in Section 5.3.

In all problems, the given domain Ω is discretized by uniform meshes of square

elements. For the problems of Sections 5.6.1 and 5.6.2, the performances of the

considered DGM and DEM elements are contrasted with those of their standard

Galerkin comparables. The performances of the DGM elements Q-4-1 and Q-(4, 0)-

1 and DEM elements Q-5-1+ are also compared to that of the streamline upwind

stabilized bilinear finite element proposed in [16]. All reported solution errors are

relative solution errors measured in the L2(Ω) broken norm (4.34), where cref(x) is

a converged “reference” solution computed using a sufficiently refined mesh. The

adoption here of a reference solution in lieu of an exact one is due to the fact that the

exact solutions of the BVPs considered in the subsequent subsections are unavailable.

It is verified that the reference solutions employed in the error analysis are free from

any spurious oscillations.

5.6.1 Inhomogeneous problem with a rotating advection field

and an L–shaped domain

Here, the following inhomogeneous BVP defined on an L-shaped domain Ω = [(0, 1)×
(0, 1)]\[(0, 0.5) × (0.5, 1)] (Figure 5.4) is considered

(

1 − y, x
)T

· ∇c(x) − κ∆c(x) = 1, in Ω = [(0, 1) × (0, 1)]\[(0, 0.5) × (0.5, 1)],

c = 0, on ∂Ω.

(5.65)

The diffusivity constant is set to κ = 10−3, so that the Péclet number for this problem

is Pe = 103. This problem is a variable-coefficient variant of an advection-diffusion

problem that was studied in [63] and Section 4.5.4. It is also similar to a benchmark

problem that was used to evaluate the performances of the residual-free bubbles and

Petrov-Galerkin stabilized methods in [14] and [23], respectively. The advection field

represents a rigid body rotation about the point (x, y) = (0, 1).
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Figure 5.4: L-shaped domain and rotating velocity field, with curved lines indicating
streamlines (Section 5.6.1)

The above problem is a stringent test for the advection-diffusion equation because

its solution presents an outflow boundary layer as well as a second boundary layer

which terminates in the vicinity of the reentrant corner
(
the point (x, y) = (0.5, 0.5)

in Figure 5.4
)
. Because it is an inhomogeneous problem, the DEM elements Q-5-

1+, Q-9-2+, Q-13-3+ and Q-17-4+ are more suitable for its discretization than their

DGM counterparts. The performances of these elements obtained for this problem

are reported in Table 5.4 for four different mesh resolutions. In each case, these

performances are contrasted with those of the standard Galerkin elements Q1, Q2,

Q3 and Q4, and that of the stabilized version of the finite element Q1. The results

are tabulated by groups of elements of comparable convergence rates. The reference

solution employed in the error analysis is computed using the higher-order Galerkin

element Q6 and a uniform mesh with an element size h = 1/120.

The reader can observe that in general, each considered DEM element delivers

for a given mesh an accuracy that is an order of magnitude better than that of its

standard Galerkin comparable. The DEM element Q-5-1+ is also found to outperform

the stabilized finite element Q1 [16] by a large margin.

Table 5.5 reports the convergence rates numerically deduced from the performance

results reported in Table 5.4. Each pair of elements (Q1, Q-5-1+), (Q2, Q-9-2+),
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Table 5.4: Inhomogeneous problem of Section 5.6.1 defined on an L-shaped domain
(Pe = 103): relative solution errors

Element 300 elements 1, 200 elements 2, 700 elements 10, 800 elements

Q1 4.91 × 101 2.28 × 10−1 1.46 × 10−1 6.33 × 10−2

Stabilized Q1 2.26 × 10−1 1.39 × 10−1 1.02 × 10−1 5.54 × 10−2

Q-5-1+ 1.29 × 10−1 3.87 × 10−2 2.16 × 10−2 7.36 × 10−3

Q2 2.02 × 10−1 9.13 × 10−2 5.44 × 10−2 1.90 × 10−2

Q-9-2+ 4.40 × 10−2 1.24 × 10−2 5.85 × 10−3 1.13 × 10−3

Q3 1.12 × 10−1 4.58 × 10−2 2.46 × 10−2 6.29 × 10−3

Q-13-3+ 3.10 × 10−2 6.85 × 10−3 2.10 × 10−3 2.24 × 10−4

Q4 6.89 × 10−2 2.45 × 10−2 1.13 × 10−2 1.92 × 10−3

Q-17-4+ 2.74 × 10−2 2.42 × 10−3 4.92 × 10−4 1.24 × 10−4

(Q3, Q-13-3+) and (Q4, Q-17-4+) is found to have a comparable convergence rate.

However, Figure 5.5 shows that in each case, the DEM element has the smallest

constant: for a given mesh size, it delivers a numerical solution that is typically one

order of magnitude more accurate than those produced by its standard and stabilized

Galerkin comparables. More specifically, the reader can observe that to achieve for

this problem the relative error of 0.1%:

• The DEM element Q-5-1+ requires 6.4 times fewer dofs than the Galerkin ele-

ment Q1.

• The DEM element Q-9-2+ requires 8.3 times fewer dofs than the Galerkin ele-

ment Q2.

• The DEM element Q-13-3+ requires 5.7 times fewer dofs than the Galerkin

element Q3.

• The DEM element Q-17-4+ requires 4.3 times fewer dofs than the Galerkin

element Q4.

These results demonstrate the computational superiority of the DEM methodology.
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The performance results reported in Table 5.5 also reveal that increasing the

number of enrichment functions of a DEM element reduces the number of dofs needed

for achieving a specified accuracy, thereby illustrating the higher-order behavior of a

DEM element with an increasing value of nE.

Table 5.5: Inhomogeneous problem of Section 5.6.1 defined on an L-shaped domain
(Pe = 103): convergence rates

Element Convergence rate∗
Required # dofs to achieve
the relative error of 10−2

Q1 1.44 139, 649
Stabilized Q1 1.16 198, 020

Q-5-1+ 1.55 21, 834
Q2 1.94 62, 721

Q-9-2+ 2.37 7, 568
Q3 2.67 33, 707

Q-13-3+ 3.23 5, 935
Q4 3.50 20, 796

Q-17-4+ 3.26 4, 802

* The convergence rates reported in Table 5.5 for the standard Galerkin elements are slightly below the the-
oretical rates associated with the L2 norm, because they are derived from numerical experiments and mesh
resolutions for which these elements have not reached asymptotic convergence.
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Figure 5.5: Inhomogeneous problem of Section 5.6.1 defined on an L-shaped domain
(Pe = 103): decrease of the relative solution error with the mesh size

5.6.2 Thermal boundary layer problem

Next, the following variable-coefficient BVP, whose boundary conditions are illus-

trated in Figure 5.6, is considered

(

y, 0
)T

· ∇c(x) − κ∆c(x) = 0, in Ω = (0, 1)2,

c(0, y) = 1, 0 ≤ y ≤ 1,

c(1, y) = y, 0 ≤ y ≤ 1,

c(x, 0) = 1 − x

ε
, 0 ≤ x ≤ ε,

c(x, 0) = 0, ε ≤ x ≤ 1,

c(x, 1) = 1, 0 ≤ x ≤ 1.

(5.66)

The parameter 0 < ε << 1 ensures that the above BVP is well-posed. It is set here

to ε = 1/10. The diffusivity constant is set to κ = 10−3, which sets the Péclet number
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to Pe = 103. Variants of this problem have been used to assess the performance of

stabilized finite elements [20, 22, 23] and other finite elements with enriched approx-

imation spaces [53, 65]. This problem is referred to here as a thermal boundary layer

problem as it may be viewed as a model problem for the formation of a pair of thermal

boundary layers along the lower and outflow boundaries of a fully developed shear

flow between two parallel plates with the lower one fixed, and the upper one moving

to the right. In this context, c(x) represents the temperature at a point x ∈ Ω ⊂ R
2.

This BVP involves a relatively simple variable advection field. However, its solution

features both an outflow boundary layer at x = 1, and a parabolic layer along y = 0.

As such, it is a challenging problem for standard Galerkin elements
(
see Figures 5.7

and 5.8 (a),(c), (e)
)
.
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Figure 5.6: Thermal boundary layer problem of Section 5.6.2: domain and boundary
conditions

Table 5.6 reports the relative solution errors associated with the discretization of

the above problem by the variable-coefficient variants of the DGM and DEM elements

introduced Section 4.3, and standard and stabilized Galerkin using four different

uniform meshes. As for the problem of Section 5.6.1, the error analysis is performed

with respect to a reference solution computed using the higher-order Galerkin element

Q6 and a uniform mesh with an element size h = 1/120. In the first column of this
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table, n denotes the number of elements in one direction. Therefore, the total number

of elements is nel = n2 and the size of an element is h =
1

n
. Figure 5.7 and Figure

5.8 display the front and rear views of the standard Galerkin and DGM solutions,

respectively. The following observations are noteworthy:

• Although the first-order DGM element Q-4-1 is outperformed by the DEM

element Q-5-1+ which has a slightly higher computational complexity, the Q-4-

1 element outperforms both the standard and stabilized Galerkin elements Q1

which have a comparable computational complexity.

• Despite the fact that the homogeneous problem considered here is a variable-

coefficient BVP and therefore locally equivalent to an inhomogeneous constant-

coefficient problem
(
see (5.10)–(5.12)

)
, the DGM elements are found to become

as effective as the DEM elements at solving it when more enrichment functions

are added to VE
e .

• In general, the DGM and DEM elements are found to deliver for a given mesh a

significantly better accuracy than their standard Galerkin comparables. When

the number of enrichment functions is increased, the higher-order DGM and

DEM elements are shown to produce numerical solutions that are an order of

magnitude more accurate than those computed by their standard higher-order

Galerkin comparables.

• Whereas the solutions computed using the DGM and DEM discretizations are

continuous and smooth, those computed using the Galerkin discretizations —

including the higher-order ones — are contaminated by spurious, non-physical

oscillations near the outflow boundary (x = 1).

5.6.3 Lid-driven cavity flow problem

The lid-driven cavity flow problem is a well known validation problem for codes

and numerical methods in the field of computational fluid mechanics. The problem is

posed on a simple two-dimensional (2D) square domain Ω ≡ (0, 1)2 ∈ R
2, representing



CHAPTER 5. VARIABLE-COEFFICIENT ADVECTION-DIFFUSION 113

Table 5.6: Thermal boundary layer problem of Section 5.6.2 (Pe = 103): relative
solution errors

Element n = 10 n = 15 n = 20 n = 30

Q1 4.00e × 10−1 1.16 × 10−1 9.47 × 10−2 5.74 × 10−2

Stabilized Q1 8.42 × 10−2 6.55 × 10−2 5.49 × 10−2 4.20 × 10−2

Q-4-1 6.48 × 10−2 4.97 × 10−2 3.79 × 10−2 2.25 × 10−2

Q-5-1+ 1.22 × 10−2 7.07 × 10−3 4.25 × 10−3 2.12 × 10−3

Q2 9.54 × 10−2 5.10 × 10−2 3.62 × 10−2 2.20 × 10−2

Q-8-2 2.10 × 10−2 9.37 × 10−3 4.43 × 10−3 1.50 × 10−3

Q-9-2+ 4.62 × 10−3 4.56 × 10−3 9.71 × 10−4 5.56 × 10−4

Q3 4.52 × 10−2 2.72 × 10−2 1.87 × 10−2 1.04 × 10−2

Q-12-3 5.55 × 10−3 3.98 × 10−3 8.38 × 10−4 5.19 × 10−4

Q-13-3+ 2.98 × 10−3 4.24 × 10−3 7.94 × 10−4 5.16 × 10−4

Q4 2.77 × 10−2 1.61 × 10−2 1.05 × 10−2 5.29 × 10−3

Q-16-4 3.73 × 10−3 4.03 × 10−3 7.56 × 10−4 4.99 × 10−4

Q-17-4+ 2.79 × 10−3 4.21 × 10−3 7.22 × 10−4 5.08 × 10−4

a cavity assumed to contain fluid. The velocity field solution a(x) to this problem is

obtained by solving the time-dependent, incompressible 2D Navier-Stokes equations

(1.1) on the domain Ω = (0, 1)2 with the boundary conditions illustrated in Figure

5.9 (a), and converging this solution to a steady state3. Three sides of the cavity (the

bottom, left and right sides) are stationary. No-slip and no-penetration boundary

conditions are applied along these walls. The top region is open, and has a purely

tangential, constant velocity a1 = const > 0. The movement of the fluid parallel

to the upper boundary causes a rotating, recirculation region to form in the cavity

(Figure 5.9 (b)).

Given the numerically-computed advection field shown in Figure 5.9 (a) and 5.10,

3This solution, computed on a 41 × 41 node uniform mesh of Ω = (0, 1)2, was downloaded from
the dataset library [66].
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Figure 5.7: Thermal boundary layer problem of Section 5.6.2

(

Pe = 103, h =
1

30
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:

front views of the computed solutions
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Figure 5.9: Domain, boundary conditions and a(x) for the lid-driven cavity flow
problem of Section 5.6.3
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Figure 5.10: Components a1 and a2 of the advection field for the lid-driven cavity
flow problem of Section 5.6.3

DEM and the standard Galerkin FEM are evaluated on the following advection-

diffusion BVP for the concentration c(x):

a(x) · ∇c(x) − κ∆c(x) = 0, in Ω = (0, 1)2,

c(0, y) = 0, 0 ≤ y ≤ 1,

c(1, y) = 1, 0 ≤ y ≤ 1,
∂c(x)
dn

∣
∣
∣
y=0

= ∂c(x)
dn

∣
∣
∣
y=1

= 0, 0 ≤ x ≤ 1.

(5.67)
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A convergence study is performed for κ = 0.01 (Pe ≈ 260), on uniform meshes with

mesh increment h = 1
10
, 1

15
and 1

20
. The reference solution taken in place of the exact

solution is a solution computed on a uniform 40 × 40 mesh using a Galerkin Q6

element. The advection field a(x) is interpolated in all computations, including the

computation of the reference solution, using bilinear Lagrange interpolation functions

(Example 7.1.6 in the Appendix).

Table 5.7: Lid-driven cavity flow problem of Section 5.6.3 (κ = 10−2, Pe ≈ 260):
relative solution errors

Element n = 10 n = 15 n = 20

Q1 2.68 × 10−1 1.88 × 10−1 3.27 × 10−2

Q-(4, 0)-1 4.67 × 10−1 3.19 × 10−1 7.85 × 10−2

Q-(4, 0)∗-1 2.18 × 10−1 1.74 × 10−1 2.22 × 10−2

Q-5-1+ 2.53 × 10−1 9.74 × 10−2 1.67 × 10−2

Q2 3.68 × 10−1 1.28 × 10−1 1.12 × 10−2

Q-(4, 5)-2 2.48 × 10−1 8.07 × 10−2 1.43 × 10−3

Q − (4, 5)∗ − 2 2.01 × 10−1 5.41 × 10−2 9.46 × 10−4

Q-9-2+ 2.24 × 10−1 7.32 × 10−2 3.64 × 10−3

Q3 2.34 × 10−1 7.91 × 10−2 3.30 × 10−3

Q-(4, 9)-3 2.01 × 10−1 7.41 × 10−2 6.31 × 10−4

Q-(4, 9)∗-3 1.87 × 10−1 4.28 × 10−2 4.44 × 10−4

Q-13-3+ 2.18 × 10−1 7.36 × 10−2 7.81 × 10−4

Q4 2.36 × 10−1 7.90 × 10−2 1.08 × 10−3

Q-(4, 13)-4 2.00 × 10−1 7.30 × 10−2 4.84 × 10−4

Q-(4, 13)∗-4 1.76 × 10−1 4.00 × 10−2 4.04 × 10−4

Q-17-4+ 2.21 × 10−1 7.63 × 10−2 4.65 × 10−4

Table 5.7 reports the relative errors in the solution to this problem computed by

the Galerkin Q1, Q2, Q3 and Q4, the pure DGM Q-(4, 0)-1, Q-(4, 5)-2, Q-(4, 9)-3, Q-

(4, 13)-4, Q-(4, 0)∗-1, Q-(4, 5)∗-2, Q-(4, 9)∗-3, Q-(4, 13)∗-4 elements, and the true DEM

Q-5-1+, Q-9-2+, Q-13-3+, Q-17-4+ elements. The decrease in the relative solution

errors with respect to the mesh size is plotted in Figure 5.12–5.14. Figure 5.11

compares the Q2 solution with the DGM Q-(4, 5)-2 solution when the diffusivity is

set to κ = 0.005 and the mesh size is h = 1
40

. The following are conclusions drawn

from these results:
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• The pure DGM elements Q-(4, 5)-2, Q-(4, 9)-3 and Q-(4, 13)-4 deliver a solution

that is in general at least as accurate as the solution delivered by their true DEM

element counterparts, namely the Q-9-2+, Q-13-3+ and Q-17-4+ respectively

(Figures 5.12 and 5.14). The former three elements are recommended, as they

have a smaller computational complexity.

• On the finest mesh considered, for which the mesh increment is h = 1
20

, the

Q-(4, 5)-2 pure DGM element outperforms its Galerkin counterpart, the Q2

element, by an order of magnitude. The Q-(4, 9)-3 pure DGM outperforms

its Galerkin comparable of similar computational complexity, namely the Q3

element, by almost an order of magnitude on this finest mesh (Figure 5.12).

• The similar performance of all elements evaluated on the coarsest mesh, for

which the mesh increment is h = 1
10

, can be attributed to the under-interpolation

of the advection field a(x) (relative to the a(x) used in computing the reference

solution) on this coarse mesh. Accuracy at the finer mesh resolutions would

improve if the a(x) used in all computation was defined on the same mesh as

the reference solution.

• The reader can infer the effect of augmenting the enrichment field VE of each

of the pure DGM elements with the “higher order” enrichment function (5.49)

by comparing Figure 5.13 with Figure 5.12. As expected, all augmented el-

ements Q-(npol, nexp)∗-nλ outperform their un-augmented analogs, denoted by

Q-(npol, nexp)-nλ.

• The Q-(4, 0)-1 DGM element is not performing well on this problem. Recall

that this element’s approximation space consists of only polynomial free-space

solutions to (1.2). Hence the local polynomial free-space solutions to (1.2)

comprising the field Vpol
e do not seem to be sufficient for this problem – the

exponential enrichment field Vexp
e are needed as well.

• All pairs of elements in the following quadruples of elements (Q1,Q-(4, 0)-1,
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Q-(4, 0)∗-1, Q-5-1+), (Q2, Q-(4, 5)-2, Q-(4, 5)∗-2, Q-9-2+), (Q3, Q-(4, 9)-3, Q-

(4, 9)∗-3, Q-13-3+) and (Q4, Q-(4, 13)-4, Q-(4, 13)∗-4, Q-17-4+) have a compa-

rable convergence rate a posteriori.

• The reader may observe that the Q2 solution is contaminated by spurious oscil-

lations near the point (x, y) = (1, 1); in contrast, the DGM Q-(4, 5)-2 solution

is smooth and oscillation free everywhere in the computational domain (Figure

5.11).
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(b) Q-(4, 5)-2

Figure 5.11: Solution plots c(x) to the advection-diffusion equation for the lid-driven
cavity flow problem of Section 5.6.3 (κ = 0.005 and 40 × 40 uniform mesh)

5.6.4 Differentially-heated cavity problem

The final benchmark problem is that of a differentially heated cavity, a variant of

the problem in Section 3.2 of [67]. The problem is posed in a square domain Ω =

(0, 1)2 representing a differentially heated cavity filled with air. In this context, the

scalar solution to (1.2) c(x) represents the temperature. The left and right walls

are isothermal with boundary conditions c = 302.5 and c = 313.5 respectively, and

the top and bottom walls are adiabatic
(

∂c
∂n

= 0
)
. The boundary conditions on the

advection (velocity) field are no-slip conditions: a = 0 on ∂Ω. The physical scenario

being modeled is one in which the left wall is cooled and the right wall is heated
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Figure 5.12: Lid-driven cavity flow problem of Section 5.6.3: decrease of the relative
solution error with the mesh size (κ = 0.01, Pe ≈ 260) for the pure DGM elements

(Figure 5.15 (a)). The result is an induced velocity field that flows counterclockwise

within the domain (Figure 5.15 (b) and Figure 5.16). This velocity (advection) is

obtained numerically by solving the unsteady compressible Navier-Stokes equations

in the near-incompressible (low Mach number) regime, converging the solution to a

steady state4.

Given the advection field a(x), DEM and the standard Galerkin FEM are evalu-

ated on the following advection-diffusion BVP for the temperature c(x)

a(x) · ∇c(x) − κ∆c(x) = 0, in Ω = (0, 1)2,

c(0, y) = 302.5, 0 ≤ y ≤ 1,

c(1, y) = 313.5, 0 ≤ y ≤ 1,
∂c(x)
dn

∣
∣
∣
y=0

= ∂c(x)
dn

∣
∣
∣
y=1

= 0, 0 ≤ x ≤ 1.

(5.68)

4This solution was computed numerically in AERO-F [68], a finite volume CFD code, using a
512 × 512 uniform mesh of the domain Ω = (0, 1)2.
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Figure 5.13: Lid-driven cavity flow problem of Section 5.6.3: decrease of the relative
solution error with the mesh size (κ = 0.01, Pe ≈ 260) for the pure DGM elements
with higher order enrichment function

The value of κ was set to 2.22 × 10−5, which corresponds to a global Péclet number

of ≈ 1530.

All computed solutions are compared to a reference solution, obtained by solving

(5.68) numerically using a fine mesh and a high order polynomial interpolant. More

specifically, this reference solution was obtained by solving (5.68) using a Galerkin

Q4 element and a 256 × 256 uniform mesh. A convergence study of various DGM,

DEM and Galerkin elements was performed, relative to this reference solution, on

meshes of 8 × 8, 16 × 16 and 32 × 32 elements (Figure 5.18). The advection field

a(x) was interpolated, in all computations, using biquadratic Lagrange interpolation

functions.

The performance results for this problem are summarized in Figures 5.17–5.20.

The following observations are noteworthy:

• The first order true DEM element Q-5-1+ produces a more accurate solution

than its Galerkin counterpart of comparable convergence order, the Q1 element,
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Figure 5.14: Lid-driven cavity flow problem of Section 5.6.3: decrease of the relative
solution error with the mesh size (κ = 0.01, Pe ≈ 260) for the true DEM elements
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Figure 5.15: Domain, boundary conditions and a(x) for the differentially-heated cav-
ity problem of Section 5.6.4
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Figure 5.16: Components a1 and a2 of the advection field for the differentially-heated
cavity problem of Section 5.6.4
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Figure 5.17: Differentially-heated cavity problem of Section 5.6.4: decrease of the
relative solution error with the mesh size (κ = 2.22 × 10−5, Pe ≈ 1530) for the true
DEM elements

at a given mesh resolution (Figure 5.17).
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Figure 5.18: Differentially-heated cavity problem of Section 5.6.4: decrease of the
relative solution error with the mesh size (κ = 2.22 × 10−5, Pe ≈ 1530) for the pure
DGM elements

• However, neither the second nor the third order true DEM elements, denoted Q-

9-2+ and Q-13-3+ respectively, outperform their Galerkin comparables, namely

the Q2 and Q3 elements (Figure 5.17).

• The situation is better for the pure DGM elements, Q-(4, 5)-2 and Q-(4, 13)-3,

each of which deliver a more accurate solution that their true DEM counterparts,

the Q-9-2+ and Q-13-3+ elements. The former two elements achieve a solution

that is comparable in accuracy to the Q2 solution as the mesh is refined (Figure

5.18).

• Figure 5.19 (a), (b) and (c) show contours of the solutions, computed with the

Galerkin Q2, the true DEM Q-9-2+ and the pure DGM Q-(4, 5)-2 elements re-

spectively, on a relatively coarse 16×16 mesh with κ = 2.22×10−5 (Pe ≈ 1530).

Oscillations near that (x, y) = (0, 1) corner are apparent in the Q2 solution (Fig-

ure 5.19 (a)). The Q-9-2+ solution (Figure 5.19 (b)) contains oscillations as well,
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Figure 5.19: Contours of advection-diffusion solution c(x) for the differentially-heated
cavity problem of Section 5.6.4 (κ = 2.22 × 10−5, Pe ≈ 1530, 16 × 16 uniform mesh)

mostly along the lines x = 0.1 and x = 0.9. The Q-(4, 5)-2 solution (Figure

5.19 (c)), in contrast, appears to be oscillation free almost everywhere in the

computational domain.

• The pure DGM Q-(4, 5)-2 and Q-(4, 9)-3 elements are therefore recommended

over the Q-9-2+ and Q-13-3+ elements for this problem. Not only do the two

DGM elements produce a more accurate and more physically correct solution,

but they also have the added benefit of having a lower computational complexity

than the former two elements.

• As in the lid-driven cavity flow problem (Section 5.6.3), the Q-(4, 0)-1 element
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Figure 5.20: Differentially-heated cavity problem of Section 5.6.4: decrease of the
relative solution error with the mesh size (κ = 2.22 × 10−5, Pe ≈ 1530) for the pure
DGM elements with higher order enrichment function

is not performing well, which suggests the polynomial enrichment field Vpol
e is

not sufficient on its own to capture well the solution to this problem.

• The reader may observe by comparing Figure 5.20 with Figure 5.18 that, in

contrast with the pure DGM elements Q-(4, 5)-2 and Q-(4, 13)-3, the augmented

pure DGM elements Q-(4, 5)∗-2 and Q-(4, 9)∗-3 outperform the Q2 element at

all mesh resolutions h considered.

• None of the pure DGM or true DEM elements evaluated here outperform the

Galerkin Q3 element, however. This suggests that the definition of the enrich-

ment field may put a limit on the accuracy a DGM or DEM element can deliver

when the element is used to solve certain variable-coefficient problems.

• To this effect, it is conjectured that, for a DGM element to outperform the Q3

element, its enrichment space would need to be augmented by a still higher

order enrichment function, namely the free-space solution to (2.1) with a(x)
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linearized within each element to third order:

a(x) = a(x̄e)+∇a|x=x̄e · (x− x̄e)+(x− x̄e)T∇2a|x=x̄e · (x− x̄e) in Ωe. (5.69)



Chapter 6

Conclusions and future work

This dissertation lays down the foundation required to apply the discontinuous enrich-

ment method (DEM) to multi-scale problems in fluid mechanics. Attention is focused

specifically on the advection-diffusion equation, a basic transport equation that arises

in fluid mechanics applications. This equation is significant both in its relevance in

describing physical phenomena of interest in science and engineering applications, as

well as as a precursor for studying more complex fluid equations, such as the Navier-

Stokes equations. The following is a summary of the primary contributions of this

dissertation, followed by some suggestions for avenues of future research.

6.1 Summary of dissertation contributions

The primary contribution of this dissertation is the development of a discontinuous

enrichment method that can be used with an h- and/or a p-mesh-refinement com-

putational strategy for the efficient finite element solution of high Péclet constant-

coefficient and variable-coefficient advection-diffusion equations (1.2) in two spatial

dimensions (2D). In this method, the usual Galerkin polynomial approximation is lo-

cally enriched (or, in some cases replaced) by the free-space solution to the governing

homogeneous PDE. To this effect, several families of enrichment functions are derived

for the advection-diffusion equation. These families include:
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• A set of exponential free-space solutions to the constant-coefficient advection-

diffusion equation, each exhibiting a sharp gradient in some direction θi ∈
[0, 2π).

• A set of polynomial free-space solutions to the constant-coefficient advection-

diffusion equation that may be derived up to any desired degree n.

• A “higher-order” enrichment function that solves the advection-diffusion equa-

tion with a(x) linearized to first order in the case when the advection field is

spatially varying.

A corresponding dual space of Lagrange multiplier approximations that are related to

the normal traces of the aforementioned enrichment functions, introduced to enforce

a weak continuity of the approximation across the element interfaces, is constructed.

The issue of potential redundancy in these approximations in the context of higher-

order elements and variable-coefficient problems is illuminated and addressed. Several

low as well as higher-order DGM and DEM elements are proposed for the solution

of constant and variable-coefficient transport problems. The proposed elements are

tested on a number of benchmark problems whose solutions are known to exhibit sharp

gradients in the high Péclet regime, and therefore cannot be solved efficiently by the

standard Galerkin FEM. These numerical experiments demonstrate the superiority of

the proposed discretization method over the standard p-type Galerkin finite element

method: the proposed higher-order DGM and DEM elements are found in general to

achieve higher convergence rates as the p-type FEM, but with much smaller (in some

cases, orders of magnitude smaller) error constants.

6.2 Future work

The work presented in this dissertation has illuminated some possible avenues for

future research, which are described briefly here.

• The potential of DEM for multi-scale advection-diffusion problems in the high

Péclet regime was illustrated numerically in this dissertation. The higher-order
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behavior of DGM and DEM elements with increasing nE was also illustrated

numerically. A rigorous mathematical analysis of the stability (in the inf-sup

sense) and convergence of the DGM and DEM elements proposed in this dis-

sertation is lacking at the present time. Future work may attempt to address

the following lingering theoretical questions.

– Can it be proven that the bilinear form b(µh, c
h) for the elements devel-

oped in this dissertation satisfies the continuous Babuška-Brezzi inf-sup

condition?

– Can the convergence and order of these elements be established a priori?

• In all the numerical experiments presented in this dissertation, the same number

of enrichment function nE was employed in each element of the mesh. Future

work may involve the development of a solution-adaptive DEM, that is, a version

of DEM in which enrichment is added only in elements where it is needed.

• In the version of DEM presented in this dissertation, the enrichment functions

were derived analytically. Future versions of DEM may employ enrichment

fields that are computed numerically. Numerically generated enrichments have

been explored in the context of other methods and other equations; cf. [69] for

an example of numerical enrichment in a PUM framework.

• The methodology developed in this dissertation for the specific case of the con-

stant and variable-coefficient advection-diffusion equation has a natural exten-

sion to more complex equations and problems in fluid mechanics, namely un-

steady and non-linear problems. To this effect, future work may involve com-

bining the methodology developed in this dissertation with the Chorin-Temam

projection method (or some variant of this method) [11, 70, 71] to build a dis-

continuous enrichment method for the incompressible, unsteady Navier-Stokes

equations.



Chapter 7

Appendix

7.1 Review of the classical Galerkin FEM and sta-

bilized FEMs

This section provides a brief review of the classical Galerkin finite element method

(Section 7.1.1) as well as some stabilized finite element methods (Section 7.1.2) in

the context of the advection-diffusion BVP (2.1). This material is based on the

established texts [6, 7, 8, 10, 54] and the journal article [16].

7.1.1 The classical Galerkin finite element method (FEM)

Functional settings and variational formulation

As outlined in Section 2.1, before defining the weak or variational counterpart of (S)

(2.1), the spaces of test and trial functions, denoted by V and S respectively, must

be characterized. In the standard Galerkin finite element method (FEM), per (2.8)

and (2.9), since m = 2 for the problem of interest (2.1), these spaces are

S = {u : u ∈ H1(Ω), u = g on Γ}, (7.1)

and

V = {w : w ∈ H1(Ω), w = 0 on Γ}. (7.2)
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Having defined the trial and test spaces, the weak form of (2.1) is obtained by taking

the L2(Ω) inner product of (2.1) with a test function v ∈ V , and integrating the

diffusion term by parts, that is:

∫

Ω

(a · ∇c− κ∆c)vdΩ =

∫

Ω

(a · ∇c+ κ∇c · ∇v)dΩ
︸ ︷︷ ︸

=a(c,v)

−κ
∫

Γ

∇c · nvdΓ
︸ ︷︷ ︸

=0 (since v = 0 on Γ)

. (7.3)

It follows that the weak (or variational) form of the problem (S) (2.1), assuming a

discretization by the standard Galerkin FEM, is

(W ) :

{

Given f, g as in (2.1), find c ∈ V such that ∀v ∈ S
a(c, v) = (v, f),

(7.4)

where a(·, ·) is the following bilinear form on V × S

a(c, v) ≡
∫

Ω

(a · ∇cv + κ∇c · ∇v)dΩ, (7.5)

and (v, f) is the linear form

(v, f) ≡
∫

Ω

vfdΩ. (7.6)

The weak forms (W ) (7.4) and (S) (2.1) are equivalent assuming all functions are

smooth. A proof of this equivalence can be found in Section 1.4 of [6]. Note that the

weak form (7.4) is non-unique (see Remark 2.2.1).

The existence and uniqueness of the solution to the variational problem (W ) (7.4)

is characterized by the celebrated Lax-Milgrim Theorem. The theorem relies on two

fundamental concepts, namely continuity and coercivity of the bilinear form a(·, ·)
(7.5). Denoting a generic Hilbert space with norm || · ||X by X, and assuming a(·, ·)
is a bilinear form on X ×X, these concepts are defined as follows.

Definition 7.1.1. The bilinear form a(·, ·) is continuous if and only if there exists

a constant M > 0 such that ∀u, v ∈ X,

|a(u, v)| ≤M ||u||X ||v||X . (7.7)
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For a continuous bilinear form, ||a|| denotes the smallest constant M satisfying

(7.7):

||a|| = sup
u,v∈X

|a(u, v)|
||u||X ||v||X

. (7.8)

Definition 7.1.2. The bilinear form a(·, ·) is coercive if there exists a constant

α > 0 such that ∀v ∈ X,

a(v, v) ≥ α||v||2X . (7.9)

The largest α satisfying this relation is called the coercivity constant . A coercive

bilinear form with a coercivity constant α is said to be α-coercive.

Given Definitions 7.1.1 and 7.1.2, one can state the Lax-Milgrim theorem .

Theorem (Lax-Milgrim) 7.1.3. Let X be a Hilbert space with norm || · ||X with

dual space X ′ having norm || · ||X′. Let f ∈ X ′ and let a(·, ·) be a bilinear form on

X × X that is continuous and coercive with a constant of coercivity α. Then there

exists a unique u ∈ X such that

a(u, v) = (f, v), ∀v ∈ X, (7.10)

and (7.10) is well-posed. Moreover, u satisfies

||u||X ≤ ||f ||X′

α
. (7.11)

It is straightforward to show [54] that the bilinear form (7.5) is continuous and

coercive on V × V :

|a(u, v)| ≤ max{CΩ||a||∞, κ}|u|1|v|1, (7.12)

for some constant CΩ, and

a(v, v) ≥ κ|v|21, (7.13)

where | · |1 denotes the semi-norm defined in (2.11).
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Galerkin formulation

The next step in solving (2.1) by the Galerkin FEM is to construct finite-dimensional

approximations of the spaces V and S, denoted by Vh and Sh respectively. As the

continuous versions of the functions ch ∈ Sh by definition satisfy the essential bound-

ary conditions on Γ, and wh ∈ Vh vanishes on Γ, it is common to write ch ∈ Sh

as:

ch = vh + gh ∈ Sh, (7.14)

where vh ∈ Vh and gh results in satisfaction, or at least approximate satisfaction, of

the boundary condition c = g on Γ. One can now state the Galerkin form of the

problem (7.4):

(G) :

{

Given f, g as in (7.4), find ch = vh + gh ∈ Sh such that ∀wh ∈ Vh

a(vh, wh) = (wh, f) − a(gh, wh).
(7.15)

At this point in the discussion, there is an additional theoretical result worth

reviewing, known as Céa’s Lemma [54]. For coercive problems, this result shows

that the approximation error of a Galerkin method is controlled by the error associ-

ated with the approximation of S by Sh, and a stability constant that involves the

continuity and coercivity constants.

Lemma (Céa) 7.1.4. Let a(·, ·) be a continuous, α-coercive bilinear form on X×X

where X is a Hilbert space with norm || · ||X . If c is the solution of (7.4) and ch is

the solution of (7.15), then

||c− ch||X ≤ ||a||
α

inf
ch∈Xh

||c− ch||X . (7.16)

Remark 7.1.5. Lemma 7.1.4 illustrates the fundamental difficulty in solving the

advection-diffusion equation (1.2) by a numerical method in the advection-dominated

(high Péclet) regime. One can infer the continuity and coercivity constants for this

equation from (7.12) and (7.13) respectively. It follows that, when ||a||∞ >> κ, the
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constant appearing in the estimate (7.16) is of the form

||a||
α

=
CΩ||a||∞

κ
>> 1. (7.17)

It is because the magnitude of this constant is so large in the high Péclet regime that

poor numerical results from the classical Galerkin FEM are observed. One way to

improve the accuracy of this method is through the addition to the variational equation

(7.4) a stabilization term (Section 7.1.2).

Discretization and matrix equation

Suppose the domain has been discretized into a finite set of elements domains Ωe, as

shown in Figure 2.1, for 1 ≤ e ≤ nel, each having nnodes nodes. Let nnp denote the

total number of nodes in the mesh, and let η = {1, 2, ..., nnp} denote the set of global

node numbers. The value of the solution will be prescribed on some subset of these

nodes, namely the nodes on Γ, where ch = gh by the Dirichlet boundary condition.

Letting ηg ⊂ η denote the set of nodes at which the solution is prescribed (i.e., the

nodes on the Dirichlet boundary Γ), the complement of ηg in η, namely η− ηg, is the

set of nodes at which ch is to be determined. In this notation, a typical member of

Vh is assumed to have the form

wh(x) =
∑

A∈η−ηg

NA(x)cA ∈ Vh, (7.18)

where NA(x) is the shape function associated with node number A and cA ∈ R. It is

assumed that the shape functions NA(x) are linearly independent, i.e.,

wh = 0 ⇔ cA = 0 ∀A ∈ η − ηg. (7.19)

Similarly to (7.18), one can write

vh(x) =
∑

A∈η−ηg

NA(x)dA ∈ Sh, (7.20)
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where dA ∈ R is an unknown dof for c(x) at node A, and

gh(x) =
∑

A∈ηg

NA(x)gA, gA = g(xA). (7.21)

Substituting (7.18), (7.20) and (7.21) into (7.15), since (7.15) must hold for all cA ∈ R,

the following linear system is obtained:

∑

B∈η−ηg

a(NA, NB)dB = (NA, f) −
∑

B∈ηg

a(NA, NB)gB, A ∈ η − ηg, (7.22)

for A ∈ η − ηg. (7.22) can be written in matrix form as

Kd = F. (7.23)

Isoparametric shape functions

It is desired that the shape functions NA(x) are defined such that, as the finite ele-

ment mesh is refined, the approximated Galerkin solution converges to the exact solu-

tion. The basic convergence requirements desired of the shape functions (Smoothness,

Continuity and Completeness) were itemized earlier in Section 2.1. As mentioned in

Section 2.1, one class of common shape functions that satisfy these properties are

the so-called isoparametric shape functions (Chapter 3 of [6]). An isoparametric

transformation from a (potentially curved) element in (x, y)-space, to a straight-edged

element in (ξ, η)-space (the parent domain) is defined by mappings of the form

x(ξ, η) =
nnodes
∑

a=1

Na(ξ, η)x
e
a, (7.24)

y(ξ, η) =
nnodes
∑

a=1

Na(ξ, η)y
e
a, (7.25)

where (xe
a, y

e
a) are the coordinates of the nodes of the element in (x, y)–space (Figure

7.1). The finite element shape functionsNa(ξ, η) are in practice defined in the natural

coordinates (ξ, η) in the reference element (−1, 1) × (−1, 1), and the integrations
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Figure 7.1: Bilinear quadrilateral element Q1 domain and local node ordering in the
parent domain (left) and in the physical domain (right)

appearing in the bilinear and linear forms are evaluated in these coordinates.

Attention is restricted in the present work to meshes of quadrilateral elements.

An isoparametric quadrilateral finite element is denoted by Qn. The integer n is a

measure of the “order” of the element. Table 7.1 summarizes some properties of the

Q1, Q2, Q3 and Q4 isoparametric quadrilateral finite elements. The second-to-last and

last columns in this table give the standard error estimate of each of the elements, in

the H0(Ω) = L2(Ω) norm and the H1(Ω) norms respectively (Chapter 4, [6]). Here,

k is a constant independent of h and the solution c. The expected convergence rate

is the exponent of h in these estimates.

Table 7.1: Summary of Galerkin quadrilateral isoparametric elements: notation and
convergence properties

Notation Name nnodes ||c− ch||0 ||c− ch||1
Q1 Bilinear Quadrilateral 4 ≤ kh2||c||2 ≤ kh||c||2
Q2 Biquadratic Quadrilateral 9 ≤ kh3||c||3 ≤ kh2||c||3
Q3 Bicubic Quadrilateral 16 ≤ kh4||c||4 ≤ kh3||c||4
Q4 Biquartic Quadrilateral 25 ≤ kh5||c||5 ≤ kh4||c||5
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Example 7.1.6. As an example, the four shape functions that define the bilinear

quadrilateral, or Q1, isoparametric element are given below, in the parent coordinate

system

N1(ξ, η) =
1

4
(1 − ξ)(1 − η), (7.26)

N2(ξ, η) =
1

4
(1 + ξ)(1 − η), (7.27)

N3(ξ, η) =
1

4
(1 − ξ)(1 + η), (7.28)

N4(ξ, η) =
1

4
(1 + ξ)(1 + η). (7.29)

These functions are plotted in Figure 7.2. Higher order shape functions can be con-

structed by taking products of one-dimensional Lagrange polynomials in the ξ and η

directions. A Lagrange polynomial of degree d, which, by construction, satisfies

la(ξa) = 1 if b 6= a and la(ξb) = 0 otherwise, is defined by:

lda(ξ) =
Πd−1

b=1,b6=a(ξ − ξb)

Πd−1
b=1,b6=a(ξa − ξb)

. (7.30)

7.1.2 Stabilized finite element methods

As discussed in the Introduction and Remark 7.1.5, the standard Galerkin FEM with

low order piecewise polynomials performs poorly if the mesh size h > κ [10]. More

specifically, the standard Galerkin FEM produces central difference-type approxima-

tions in advection-dominated regimes. This phenomenon can be attributed to the loss

of coercivity of the bilinear form a(·, ·) (7.5) when the Péclet number is high (Remark

7.1.5).

A common way to handle the difficulties encountered with the standard Galerkin

method in this regime is by modifying the variational formulation (W ) (7.4) by adding

to it some numerical or artificial viscosity terms in a way that retains the weighted

residual structure. This modification gives rise to the class of stabilized finite
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Figure 7.2: Shape functions of the bilinear quadrilateral Q1 element

element methods . Stabilized finite element methods have been studied since the

1980s. Some popular variants are:

• The Streamline Upwind/Petrov-Galerkin (SUPG) method , introduced

by Hughes and Brooks [15, 72].

• The Galerkin/Least-Squares (GLS) method of Hughes, Franca and Hul-

bert [19].

• The Unusual Stabilized Finite Element Method (USFEM) of Franca

et al. [1, 20].

Let Vh be the discrete analog of (7.2) and let vh ∈ Vh. Now, rather than taking

the L2(Ω) inner product of (1.2) with vh ∈ Vh as done in (7.3), take instead the inner

product of (1.2) with vh + τhL̄vh, where τh ∈ R is some stability parameter, and L̄
is a differential operator (to be defined shortly) related to the operator governing the
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problem (1.2)

∫

Ω
(a · ∇ch − κ∆ch)(vh + τhL̄vh)dΩ =

∫

Ω
(a · ∇chvh + κ∇ch · ∇vh)dΩ

−κ
∫

Γ

∇ch · nvhdΓ

︸ ︷︷ ︸

=0 (since vh = 0 on Γ)

+τh
∫

Ω
LchL̄vhdΩ.

(7.31)

(7.31) is of the form

a(ch, vh) + τh(Lch, L̄vh), (7.32)

so that the Galerkin equation for the new stabilized finite element method is

a(ch, vh) + τh(Lch, L̄vh) = (f, vh) + τh(f, L̄vh). (7.33)

The class of methods defined by (7.33) are known as residual methods , due to

the presence of the weighted residual term (Lch − f, L̄vh) in (7.33). Remark that

if ch in (7.33) is replaced with c, namely the exact solution to (1.2), the expression

(7.33) reduces exactly to the Galerkin equation of the standard FEM (7.15), since

Lc− f = 0.

Different stabilized methods are obtained by changing the definition of the differ-

ential operator L̄. In particular, for the SUPG, GLS and USFEM, this operator is

defined respectively by [16]:

L̄ ≡







a · ∇, SUPG [19],

L, GLS [15],

κ∆ + a · ∇, USFEM [20].

(7.34)

Remark 7.1.7. The definitions of L̄ (7.34) differ in the treatment of the diffusive

term κ∆vh. Note that in the case of bilinear finite element shape functions, ∆vh = 0,

so that all three methods (7.34) are identical.

Remark 7.1.8. For (7.33) to be defined, the definition of the spaces Vh and Sh need

to be modified such that the term (∆ch, L̄vh), which contains second order derivatives,

is defined.
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Various approaches for selecting the value of the stability parameter τ h have been

proposed. For example, τh is typically chosen to be [19]

τh =







O
(

h
|a|

)

, if Peh >> 1,

O
(

h2

κ

)

, if Peh << 1,
(7.35)

where h is a characteristic length associated with a typical element Ωe, and Peh

denotes the local element Péclet number, defined by

Peh ≡ |a|h
2κ

. (7.36)

7.2 Free-space solutions to the constant-coefficient

advection-diffusion equation in 3D

The angle-parameterized exponential enrichment functions (3.10) have three-dimensio-

nal (3D) analogs. In 3D, the advection-direction is specified by two angle parameters,

denoted by θa ∈ [0, 2π), the azimuth angle , and ϕa ∈ [0, π), the inclination an-

gle , (similar to the two angle parameters that come up in the spherical coordinate

system; Figure 7.3). Then, the advection coefficient vector is

aT =
(

a1, a2, a3

)

= |a|
(

sinϕa cos θa, sinϕa sin θa, cosϕa
)

. (7.37)

The angles θa and ϕa are given, that is, they are inferred from the PDE being solved,

like the 2D advection direction, referred to earlier as φ (Figure 4.2). By analogy to

the 2D case, the enrichment basis for the 3D advection-diffusion equation is given by:

cE(x; θi, ϕi) = e[
a1
2κ

+
|a|
2κ

sin ϕi cos θi](x−xr,i)e[
a2
2κ

+
|a|
2κ

sin ϕi sin θi](y−yr,i)e[
a3
2κ

+
|a|
2κ

cos ϕi](z−zr,i).

(7.38)
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3

The angles θi ∈ [0, 2π) and ϕi ∈ [0, π) are selected to generate a particular enrichment

function, much like the angle θi in 2D:

Θc × Φc ≡
{

{(θi, ϕi)}nE

i=1 ∈ [0, 2π) × [0, π) = set of angles specifying VE in 3D
}

.

(7.39)

One may verify that LcE = a · ∇cE − κ∆cE = 0 for cE given by (7.38) with a ∈ R
3

and for all angles θi and ϕi.

7.3 Free-space solutions to the 2D advection-diffus-

ion equation with a(x) = Ax + b and orthogo-

nally diagonalizable A

In this section, some additional free-space solutions to the 2D advection-diffusion

equation in which a(x) is a linear function, that is

[Ax + b] · ∇c− ∆c = 0, (7.40)

are derived for the specific case when A is orthogonally diagonalizable. In this case,

the spectral decomposition of A is

AT = SDST , SST = I. (7.41)
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Substituting (7.41) into (7.40), gives

[SDSTx + b] · ∇c− ∆c = 0. (7.42)

where D is a diagonal matrix containing the eigenvalues of A, denoted by σ1 and σ2.

Define now the following transformation from R
2 to R

2:

z ≡ STx. (7.43)

Then

∇x ≡ ∇ = S∇z, (7.44)

so that

∆x ≡ ∆ = ∇x · ∇x = ∇T
z (STS
︸︷︷︸

I

)∇z = ∆z. (7.45)

Writing (7.42) in the new coordinates (7.43),

[zTDST + bT ]S∇zc− ∆zc = 0, (7.46)

or

[zTD + bTS]∇zc− ∆zc = 0. (7.47)

Letting s1 and s2 denote the two columns of S (the orthonormal eigenvectors of A)

S ≡
(

s1 s2

)

, (7.48)

(7.47) can be written as

[σ1z1 + (s1 · b)]cz1 + [σ2z2 + (s2 · b)]cz2 − [cz1z1 + cz2z2 ] = 0. (7.49)

Performing an additional change of variables,

z̃1 ≡ σ1z1 + (s1 · b), z̃2 ≡ σ2z2 + (s1 · b), (7.50)
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(7.49) can be written as

σ1z̃1cz̃1 + σ2z̃2cz̃2 − σ2
1cz̃1z̃1 − σ2

2cz̃2z̃2 = 0. (7.51)

(7.51) can be solved by separation of variables, that is by assuming a solution of the

form:

c(z̃1, z̃2) = H(z̃1)K(z̃2), (7.52)

for some C2(R) functions H,K : R → R. Substituting (7.52) into (7.51), the following

is obtained:
σ1z̃1H

′ − σ2
1H

′′

H
+
σ2z̃2K

′ − σ2
2K

′′

K
= 0, (7.53)

so that H and K satisfy the following ODEs, for some constant m ∈ R,

σ2
1H

′′ − σ1z̃1H
′ +mH = 0, (7.54)

σ2
2K

′′ − σ2z̃2K
′ −mK = 0. (7.55)

Assume σ1, σ2 6= 0. Then (7.54)–(7.55) are equivalent to:

H ′′ − 1

σ1

z̃1H
′ +

m

σ2
1

H = 0, (7.56)

K ′′ − 1

σ2

z̃2K
′ − m

σ2
2

K = 0. (7.57)

The general free-space solution to ODEs of the form

c′′ + axc′ + bc = 0, (7.58)

for constants a and b are

c = C1Φ

(
b

2a
,
1

2
,−1

2
ax2

)

, (7.59)

where Φ(a, b;x) are degenerate hypergeometric functions (also known as Kum-

mer functions) (p. 216, case 20 of [73]). These functions are defined as the following
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series:

Φ(a, b; z) ≡ 1 +
a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+ · · · =

∞∑

k=0

(a)k

(b)k

zk

k!
, (7.60)

where (x)k denotes the Pochhammer symbol , given by the recursive relation

(x)0 ≡ 1,

(x)n ≡ (x)n−1(x+ n− 1), n = 1, 2, ....
(7.61)

It follows that the solutions to (7.56) and (7.57) are

H(z1) = C1Φ

(

− m

2σ1

,
1

2
,

1

2σ1

(σ1z1 + s1 · b)2

)

, (7.62)

K(z2) = C2Φ

(
m

2σ2

,
1

2
,

1

2σ2

(σ2z2 + s2 · b)2

)

, (7.63)

respectively, or, transforming back to the (x, y) coordinates,

H(x) = C1Φ

(

− m

2σ1

,
1

2
,

1

2σ1

(σ1s1 · x + s1 · b)2

)

, (7.64)

K(x) = C2Φ

(
m

2σ2

,
1

2
,

1

2σ2

(σ2s2 · x + s2 · b)2

)

, (7.65)

so that

c(x) = Φ

(

− m

2σ1

,
1

2
,

1

2σ1

(σ1s1 · x + s1 · b)2

)

Φ

(
m

2σ2

,
1

2
,

1

2σ2

(σ2s2 · x + s2 · b)2

)

.

(7.66)

The functions (7.66) can be parametrized with respect to an angle parameter by

selecting, for instance,

m ≡
√

σ2
1 + σ2

2 cos θi, (7.67)

for some angle θi ∈ [0, 2π). These functions are shown in Figure 7.4 as the parameter

θi is varied for a sample BVP.
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(a) θi = 0 (b) θi = π
6

(c) θi = π
4

(d) θi = π
3

(e) θi = 2π
3

(f) θi = 3π
4

(g) θi = 5π
6

(h) θi = π

Figure 7.4: Plots of free-space solutions to (7.40) of the form (7.66) for different values
of θi

7.4 Free-space solutions to the unsteady 2D constant-

coefficient advection-diffusion equation

Consider the unsteady, constant coefficient advection-diffusion equation:

∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
− κ

[
∂2u

∂x2
+
∂2u

∂y2

]

= 0, (7.68)
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for a1, a2, κ ∈ R, and κ > 0. It is possible to derive exponential free-space solutions to

(7.68) that can be parameterized with respect to an angle parameter θi ∈ [0, 2π), sim-

ilar to the exponential free-space solutions to the steady advection-diffusion equation

(4.1).

Let u = U(ξ, η, t) where

ξ ≡ x− a1t, η ≡ y − a2t. (7.69)

Then, by the chain rule,

∂u
∂t

= ∂U
∂t

+ ∂U
∂ξ

∂ξ
∂t

+ ∂U
∂η

∂η
∂t

= ∂U
∂t

− a1
∂U
∂ξ

− a2
∂U
∂η
,

(7.70)

∂u

∂x
=
∂U

∂ξ
,

∂u

∂y
=
∂U

∂η
. (7.71)

Substituting (7.70) and (7.71) into (7.68), the following heat equation for U is ob-

tained:
∂U

∂t
= κ

[
∂2U

∂ξ2
+
∂2U

∂η2

]

. (7.72)

(7.72) is now solved using separation of variables. Assume a solution of the form

U(ξ, η, t) = T (t)Z(ξ, η). (7.73)

Substituting (7.73) into (7.72), yields

1

κ
T ′(t)Z(ξ, η) = T (t) [Zξξ + Zηη] ≡ −λ2, (7.74)

for some λ ∈ R (separation of variables constant, to be parameterized shortly). Di-

viding (7.74) by T and Z we obtain the following ODE for T (t) and PDE for Z(ξ, η):

T ′(t) + λ2κT (t) = 0, (7.75)

Zξξ + Zηη = −λ2Z. (7.76)
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It is straightforward to solve (7.75) for T (t) (up to a multiplicative constant):

T (t) = eλ2κt. (7.77)

To solve (7.76), again assume a separation of variables solution:

Z(ξ, η) = X(ξ)Y (η). (7.78)

Substituting (7.78) into (7.76), gives

X ′′Y +XY ′′ = −λ2XY, (7.79)

or
X ′′

X
= −

(

λ2 +
Y ′′

Y

)

≡ µ2, (7.80)

for some µ ∈ R. Solving (7.80) for X(ξ) and Y (η) gives

X(ξ) = eµξ, (7.81)

and

Y (η) = e
√

λ2−µ2η. (7.82)

Putting everything together, the solution to (7.72) is:

U(ξ, η, t) = exp
{

λ2κt+ µξ + η
√

λ2 − µ2
}

. (7.83)

The constants µ and λ can now be specified. Note that the argument of (7.83) is

of the form:

Aξ +Bη + (A2 +B2)t (7.84)

with A = µ and B =
√

λ2 − µ2. This motivates the introduction of an angle param-

eter θ, as for the steady advection-diffusion equation, and the definition

µ ≡ k cos θ,
√

λ2 − µ2 ≡ k sin θ (7.85)
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For some constant k ∈ R. Substituting (7.85) and then (7.69) into (7.83), the angle-

parametrized solutions to (7.68) are obtained:

u(x, y, t; θ) = exp
{
k2κt+ (k cos θ)(x− a1t) + (k sin θ)(y − a2t)

}
. (7.86)

The functions (7.86) are free-space solutions to (7.68) for any angle θ ∈ [0, 2π).

Given the availability of free-space solutions to the unsteady advection-diffusion

equation (7.68), one may formulate a space-time discontinuous Galerkin (DG) method

for this equation, in the same spirit of the method presented in [74] for the wave

equation. Some useful references for this are [75, 76]. An interesting future research

avenue would be to compare the performance of this space-time DEM for (7.68) with

the performance of a space-only DEM, in which a semi-discrete form of (7.68) is

obtained by discretizing (7.68) in space only and the resulting semi-discrete system

is advanced forward in time using a time-integration scheme.
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